
7 -A192 493 SYMCHRONIZABLE SERIES EXPRESSIONS PART I USER'S MNAFOR THE OSS MACRO (U) MASSACHUSETTS INST OF TECH
CAMBRIDGE ARTIFICIAL INTELLIGENCE L. R C MATERSp UNCLASSIFIED NOY 87 AI-N-958 NM1a4-85-K-0124 F/G 12/5 U

I lffllffl..lffllf

I m flllN f.o ~f lf

2iii1 5 1. 1W 1.

S:LL>- i Ul TEST C,-HA'

r"%,%
, i o .• •• -. , 9 'S • • • • • •

*

04 0 ., -" 0.,- ,, 0,. -0•. ,0, , ' 0'.-. 0 . 0.. ,',. 0 0..,, " ,,0 ,,.". , 0, . ["

" '"'' S 5" S " " "
i'"."

, ,", - - .s .". ,

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
ARTIFICIAL INTELLIGENCE LABORATORY

A.. Memo No. 958 November 1987

Synchronizable Series Expressions:

Part I: User's Manual for the OSS Macro Package

u, DTIC
Richard C. Waters Jll A ELECTFAD-A 190 493 Ao

Abstract -

The benefits of programming in a functional style are well known. In par-
ticular, algorithms that are expressed as compositions of functions operating
on series/vectors 'streams of data elements are much easier to understand and
modify than equivalent algorithms expressed as loops. Unfortunately, many
programmers hesitate to use series expressions, because they are typically
implemented very inefficiently.

A Common Lisp macro package (oss) has been implemented which sup-
ports a restricted class of series expressions, obviously synchronizable series
expressions, which can be evaluated very efficiently by automatically convert-
ing them into loops. Using this macro package, programmers can obtain the
advantages of expressing computations as series expressions without incurring

an) run-time overhead.

Copyright ' Massachusetts Institute of Technology, 1987

This report describes research done at the Artificial Intelligence Laboratory of the Mas-
sachusetts Institute of Technology. Support for the laboratory's artificial intelligence research
has been provided in part by the National Science Foundation under grant IRI-8616644. in part
by the IBM Corporation. in part by the NYNEX Corporation, and in part by the Advanced Re-
search Projects Agency of the Department of Defense under Office of Naval Research contract
N00014-85-K-012 1.

The views and conclusions contained in this document are those of the authors. and should I
not be interpreted as representing the policies, neither expressed nor implied, of the National
Science Foundation, of the IBM Corporation, of the NYNEX Corporation, or of the Department

t a. of Defense.

' " L 1 3 04 049

-" -0 ' - %.W

Contents

1. All You Need To Know to Get Startvd..............

Example..................................I

2. Reference M anual

Restrictions and Definitions of Terni..

General Information. 12

Enumerators....... 14

On-Line Transducers. 21

Cotruncation 2

Off-Line Transducers. 26

Selection and Expansion . 9

Splitting. 31

Reducers. 32

Early Reducers. :35

Series Variables 37

Coercion of Non-Series to Series 0

Implicit Mapping. 40

Literal Series Functions. 44

Defining Series Functions. 45

Multiple Values. 47

Alteration of Values. 18

Debugging. 49

Side- Effects 50

3. Bibliography. 52

4. Error Messages :

.5. Index of Functions.

Acknowledgments. Both the oss macro package and this report have benefited
from the assistance of a numnber of people. In part icuilar, C'. Rich. A. Nlever. Y. Feld-

mian , D. C hapman. and P. AXnagnrootopoti los Ijiade l igs oll. which led1to a number o

very significant improvements in the clarn! andl~ pow~er of obviously synchroni7.alle seIrie
expressions.

4A

% . S * ~ v .

S~~~~~jmi'~~~~~~~~ V :. A$,tA'~ Vt W.n0e ~e.d

REPORT DOCUMENTATION PAGE,- READ INSTRUCTIONS
BEFORE COMPLETING FORM

I REPORT NUMBER
3 J5IOCPEN7

AAOAl Memo 958

4 TO? LE fonad Subtitle) S. TYPE OF REPOsRT & PERIOD COVERED

Synchronizable Series Expressions:
Part I: User's Manual for the 055 Macto Package

7. AUTWORsi 6. CONTRACT ORt GRANT MNMSER.J

Richard C. Waters N00014-85-K-0124

9. PERFORMING ORGANIZATION NAME ANO AODORESS 10. PROGRAM ELEMENT. PROJI!CT. TASK
Artificial Inteligence Laboratory AREA A WORK UNIT HNMERS

545 Technology Square
Cambridge, MA 02139

It. CONTROLLING OFFICE NAME AND ADDRESS ii. RPOuR OATE

Advanced Research Projects Agency November, 1.987
1400 Wilson Blvd. 13. NUMBERt OF PAGES
Arlington, VA 22209 63
14f MONITORING AGENCY N4AME 4 &OORESS4iI diffrler, frm Coroie.iph Office) IS. SECURITY CLASS. (of Ihe roepen)
Office of Naval Research

4 Information Systems
Arlington, VA 22217 S.OkASICTN/OGAIN

16. DISTRIUIUTION STATEMENT let this Repot)

Ditibto is ulmtd

17. DISTRIBUTION STATELMENT (of Iees abstract oietrod in Black 20, It diferenat fraft Rattail)

IS. SUPPLEMENTARY NOTES

None

IS. KEY WORDS (Coninue on reverse aide 01 negesemy a"~ #~Iffyl by blacke anber)

Series Expressions Program Optimization
Looping Constructs Functional Programming
Compilation

20. ABISTRACT (Contine an Fvorite side 11 moeeedir and Iteemeit IF Weekt r..
The benefits of programming in a functional style are well known. In

particular, algorithms that are expressed as compositions of functions oper-
ating on series/vectors/streams of data elements are much easier to under-

- stand and modify than equivalent algorithms expressed as loops. Unfortunately
* many programmers hesitate to use series expressions, because they are typicall

implemented very inefficiently.
4 A Common Lisp macro package (OSS) has been implemented which supports a

restricted class of series expression, obviously synchronizable (Block 20 Cant,

DD I ~)1473 EDITION4 OF I NOV SS1 IS OBS2OLETE UJNCLASS IF IED
5' /N :03084 661 ISECURITY CLASSIFICATION OF TNIS PAGE (When Dae Enorc

%t %

0g7

(Block 20 Continued)

series expressions, which can be evaluated very efficiently by automatically
converting them into loops. Using this macro package, programmers can obtain
the advantages of expressing computations as series without incurring any

* run-time overhead.

%o X

,w

A2..

"a

1. All You Need To Know to Get Started

"T [his first section describes everything you need to know to start using the oss macro

package. It then presents a detailed example. Section 2 is a comprehensive reference man-
ial. It describes the functions supported by the oss macro package in detail. Section 3

contains the bibliography. Section 4 explains the error messages that can Ie produced
by the oss macro package. Section 5 is both an index into Section 2 anid all abbreviated

de.,cription of the oss functions.

A companion paper 6 gives an overview of the theory underlying the oss macro

package. It explains why thins are designed the way they are and compares the oss

inacro package with other -ystens that support operations on series. In addition, the

companion paper gives a brief description of the algorithms used to implement the oss

macro package. As part of this, it describes a number of subprimitive constructs which

are provided for advanced users of the oss macro package.

The OSS data type. A series is an ordered linear sequence of elements. Vectors.

lists, and streams are examples of series data types. The advantages (with res1)ect to con-

ciseness, understandability. and modifiability) of expressing algoriti ins as compositions

of functions operating on series, rather than as loops, are well known. U'nfortunately,

as typically implemented. series expressions are very inefficient--so inefficient, that pro-

grammers are forced to use loops whenever efficiency matters.

Obviously Synchronizable Series (oss) is a special series data type that can be im-

plemnented extremely efficiently by automatically converting oss expressions into loops.

This allows programmers to gain the benefit of using series expressions without paying

any price in efficiency.

The oss macro package adds support for the oss data type to Common Lisp '41. The

macro package was originally developed under version 7 of the Symbolics Lisp Machine

software [7". However, it is written in standard Common Lisp and should be able to run

in any implementation of Common Lisp. (It has been tested in DEC Common Lisp and

Sun Common Lisp as well as Symbolics Common Lisp.)

The basic functionality provided by the oss macro package is similar to the function-
ality provided by the Common Lisp sequence functions. However, in addition to being

much more efficient, the oss macro package is more powerful than the sequence func-

tions, because it includes almost all of the operations supported by APL t31 and by the

Loop macro 12]. As a result. oss expressions go much farther than the sequence functions
towards the goal of eliminating the need for explicit loops.

Predefined OSS functions. The heart of the oss macro package is a set of several __

dozen functions which operate on os series. These functions divide naturally into three

• classes. Enumerators produce oss series without consuming any. Transducers compute [U
WI oss series from oss series. Redzcer, consume oss series without producing any. As a

mnemonic device, the name of each predefined oss function begins with a letter code

that indicates the type of operation. These letters are intended to be pronounced ab

separate syllables.

Predefined enumerators include Elist which enumerates successive elemerts of a list, -......

Evector which enumerates the elemients of a vector, and Eup which enumerat's the inte-

-- II

.oplr'Co"i

411 You N\eed Fo huuow to) Ge;t Started

gers ina range. (In the examples below, the not at i [I.] Is usd t) repremsent anOS

(Elist '(a b c)) 4[a b c]
(Evector *(a b c)) :>- [a b c]
(Eup 1 :to 3) = [1 2 3]

Predefined transducers include Tpositions which returns the positions, of the nion-null
elements in a series and Tselect which selects the elements of its second argumient which

correspond to non-null elements of its first argument.

(Tpositions [a nil b c nil nil]) =: [0 2 3]
(Tselect [nil T T nil] [1 2 3 4]) =:> E2 3]

Predefined reducers include Rlist which combines the elements of a series into a list.
Rsum which adds up the elements of a series. Rlength which computes the length of a
series, and Rf irst which returns the first element of a series.

M~ist [a b cJ) (a bc)
(Rsum[1 23) 6
(Rlength [a b c]) = 3
(Rf irst [a b c]) => a

A s simple illustrations of how oss functions are used, consider the following.

(Rsum (Evector #(1 2 3)) =:>, 6

(Rlist (Tpositions (Elist '(a nil b' c nil))) => (0 2 3)

Higher-Order OSS functions. The oss miacro package provides a number of
higher-order functions which support general classes of 055 operations. (Each of these

functions end in the suffix 'T". which is pronouncedl separately.)
For example, enumeration is supported by (EnumerateF init step test). This enutner-

ates an oss series of elements starting with init by repeatedlY applying step. The oss
series consists of the values up to. but not including, the first value for which test is true.

Reduction is supported by (ReduceF init function itemns) which is analogous to the
sequence function reduce. The elements of the OSS series, iteins are combined together
tising function. The quantity init is ii-,ed as an init ial seed value for the accuinitilation.

4 Mapping is supported by (TmapF funrtion itemis) which is, analogous to the sequence
funictioni map. An OSS series is c-omlpulted by applying funcrtion to each element of the oss
series Iterns.

(EnumerateF 3 #'1- #'minusp) =:> [3 2 1 0J
(ReduceF 0 8.+ [1 2 3]) z'6

q (TmapF 0 'sqrt (4 9 16]) z'[2 3 4]

Implicit mapping. lb.e oss miacro packiivv -oritaii ai >pecial riuu'cianisuui thiat
!akes riiap ping part icularl *v easy. W heriever ait ord iia ry Lisp fo lict ion I., aplplied to ani

u)ss er t-. It is aiitoniatically rita)uf ovrteewet fte(S ~ries. [or examiple.

In the expres-sion below. the fuirwtiOru Sqrt il Mapped ;%ter lie oss rrie, of Tinmbers.
createdl by Evector.

(Rsum (sqrt (Evector #(4 16)
£(Rsum (TmapF #'sqrt (Evector #(4 16)) ' 6

Ilo at considerable ext ent. npl ici t ma ppin ris a periphieralI part of the oss mnacro

package one can alwaYs ise TmapF lit -vad. liowe~vr. dIue to the ubiquitous nat ure of
mnapping. IIm plic61t I Pn i)J TI _ ext relTie Iy ~n verlj Ieliit . A, ilurt rated belo\ its key virt ne
is that It redulce, the Tnlmlwr -4 literal lambda expresrurr that hav to be written.

(Rsum (expt (abs (Evector #(2 -2 3)) 3))
(Rsum (TmapF #'(lambda (x) (expt (abs x) 3))

* (Evector #(2 -2 3)) 43

* Creating OSS variables. V he oSS Iiacro pa~ kage provides two forins IletS and

letS*1 which are analogous to let and let*. except that they make it possible to create
variables that can hold OSS series. (The suffix "S". pror.inced separately, is used to

indicate priini tive 055 formns.)As shown In t he exa li pie below. lets can1 b)' ied o binrd
both ordinary variables (eg.n) arid OSS variables (eg.items).

(defun average (v)
(lets* ((items (Evector v))

(sum (Rsum items))
(n (Rlength items)))

UI sum n))

(average #(1 2 3)) z ' 2

User-defined OSS functions. New oss functions can be defined by using the formi
defunS which is analoouts to defun. Explicit declarations are- required in,,ide defunS to
indicate which argtinient s recei ve 055 series. The following examiple shows the definiit ion
of an OSS function which comiputes, the product of the nunibers in an OSS serics.

(defunS Rproduct (numbers)
(declare (type oss numbers))

(ReduceF 1 V's numbers))

(Rproduct [2 4 6]) => 48

Res trictions on 055 expressions. As illustrated by the examiples above, oss

expressions are const ructed in the same way as any other Lisp expression -- ir.e., OSS
functions are composed together in any way dlesiredl. However, in order to guarantee that
095 expressions (can always he coniverted into highly efficient loops, a few restrictions

have to be followed. These rest rict ions are siutiarized in the beginning of Section 2 and
discussed in detail in 6(. Here. it is siificient to note that these restrictions are checked

by the OSS miacro package and[error iessages are issuied whenever they are violated.
The best ap~proachi for provrarnners to take is to simiply write 055 expressions without

* \~orrying about thlese restrictions aii(I then fix thle expressions in the event that the

restrictions are violatedl. In conjuniction with the descriptions of the error miessages
involved. Sect join I cont ains exp~lici t s nggestions on how to fix erroneous OSS expressions.

Ir r V '.rr .0 e .

% 9

4 All 'ou Veed To Know to (et Started

Further. it should be noted that simple oss ,xpre.iii. art, very 'inlikely to violate
any of the restrictions. In particular, it it, iip,)ssi ble for an osS expr,-sion to violaze an\

of the restrictions unless it contains a variable bund by letS or defunS.

Benefits. The benefit of oss expressions is that itheY retain mosi of the advantages

of functional programming using series, while eliminatin- the costs. However, given the
restrictions alluded to above, the question naturally arises as to whet her oss expressions
are applicable in a wide enough range of situations to be of real pragmatic benefit.

An informal study v5 was undertaken of the kind, of loops programiers actually
write. This study suggests that approximately SO'.' ,f tH. loops programiners write are

constructed by combining a few common kinds of lo pinrig agorithmns. The Oss inacro
package is designed so that all of these alvorithin cant be repre.,ented as o()s function>.

As a result. it appears that approximately 8U"(of loo,)s (an he triviallv r.-written as- oss

expression,,. Many more can be converted to this form witli only mifr modification.
Moreover. the benefits of using OSS expressionts go I)bey0oid replaciig individual loops.

A major shift toward using oss expressions would be a significant change in the way
programming is done. At the current time, most prograins contain one or niore loops
and most of the interesting computation in these program> occurs in these loops. This
is quite unfortunate, since loops are generally acknowledged to be one of the hardest
things to understand in any program. If Oss expressions were used whenever possible.

most progranis would not contain any loops. This would he a major step forward in
conciseness, readability, verifiability, and maintainability.

Example

The following example shows what it is like to use 05;s expressions in a realistic V
prograniiin;ig context. The example consists of two paris: a pair of functions which
convert between sets represented as lists and sets represented as bits packed into an
integer and a graph algorithm which uses the integer representation of sets.~Bit sets. Small sets can be represented very efficiently as binary Intogers wh ere each

I ,it in the integer represents an element in the set. l3elow. sets represented in this
fahLion are referred to as bit sets.

(Common Lisp provides a number of bitwise operations on integers which can be used
to tanipulate bit sets. In particular. logior computes he union of two bit sets while

*logand computes their intersection.
The functions in Figure 1.1 convert between sets represente,1 as list. and bit sets. In

order to perform this conversion a mapping has to be established between l)it positions
and potential set elements. This mapping is specified Ly a inverse. A universe is a list
of elements. If a bit set b is associated with a universe a. ihen the ith element in 11 IS in
tho, set represented by b iff the ith bit in b is 1.

Ior example. given the universe (a b c d e). Ht iteer #bOlOl1 represent, the i'
,a,b,d}. By Common Lisp convention, the (it bit iI an r t#cr is the rihtinc bcit.)I (vn a bit set and its associated universe. tlie functinm bst->list converts I1he
LI;t set into a set represented as a list of its elhmeiin. It u ti, s by enumeiratinR the
-1v;,ients in the universe along with their positions and con srlicting a list of the elemen t

- ~ ~ ~~ 4.

i;%
LOVtm.W.

Example

(defun bset->list (bset universe)
(Rlist (Tselect (logbitp (Eup 0) bset) (Elist universe)))

((defun list->bset (list universe)
(ReduceF 0 #'logior (ash 1 (bit-position (Elist list) universe))))

(defun bit-position (item universe)
.A or (Rfirst (Tpositions (eq item (Elist universe))))
p? , (I- (length (nconc universe (list item))))))

Figure 1.1: Converting between lists and bit sets.

which correspond to Is in the integer representing the hit set. (\hen rio :tc arguiuen
is supplied. Eup counts up forever.)

The function list->bset convert, a sel represented as a list of its elements into a
bit set. Its second argunllleri t IS thle ii niver~e which is to be associated wvit h tile bit Set
created. For each element of the list, the function bit-position is called in order to

deiermine which bit position should be set to 1. The function ash is used to create an
integer with the correct bit set to 1. The function ReduceF is used to combine the integers
corresponding to the individual elements together into a bit set corresponding to the list.

The function bit-position takes art item and a universe and returns the bit position
corresponding to the item. The function operates in on, of two ways depending on
whether or not the item is in the universe. The first line of the function contains an Oss
expression which determines the position of the item in the universe. If the item is not in
the universe, the expression returns nil. (The function Rfirst returns nil if it is passed
a series of length zero.)

If the item is not in the universe. the second line of the function adds the item (into
the end of the universe and returns its position. The extension of the universe is done

,. be side-effect so that it will be permanently recorded in the universe.

Figure 1.2 shows the definition of two oss reducers which operate on oss series of
bit sets. The first function computes the union of a series of bit sets. while the second
computes their intersection.

Live variable analysis. .s an illustration of the way bit sets might be used. consider
the following. Suppose that in a comnipiler. progran code is being represented as blocks

of straight-line code connected by possibly cyclic control flow. The top part of Figure 1.3
shows the data structure which represents a block of code. Each block has several pieces
of information associated with it. Two of these pieces of information are the blocks

(defunS Rlogior (bsets)
(declare (type oss bsets))

(ReduceF 0 #'logior bsets))

(defunS Rlogand (bsets)
(declare (type oss bsets))

(ReduceF -1 #'logand bsets))

I ".z Figure 1.2: Operations oil oss series of hit sets.
-: "- VWN ~ i

W.

, ,f

6-

6 A1 'o),(,[I Nclo L) iow to G et Started

that can b~ranch to the block in (questiotn and thicks it -anl branch ito .\A prwirani I>

rep resent ed as a list of blocks that point to each Ii o l; t iiron ii t hc>e fields.

In addition to the control flow~ informnation above, e'ach '.triict art' cinitain>, iioriiiaitttri

about the way variables are accessed. In particular. It reo i h variale> tie lilock

reads and the variables the block writ es. An additionial fit'Id ico nPut ed i, N i fit' funic t II

determine-live discussed below) records the variale %ki 1 are lii tit l i ock. iA

varia ble is live if it has to be saved, because it can! p(-IiTi t ijv be uised by 't lowi it g1-

block. IFl nallv. there is a teniporarv data field %N i(eIt I, . filii.Ci lts s (ucl a,

determine-live) which performi coipu tat ions a xolveti xi h h~e thi (k,

The remnainder of Figure 1.3 shows the function determine - ive w l bhl iven a pro

g.rain represented as a list of blocks. det eruiines tile x atn Ie" \,o h ch are !I-(i' inacii bloc k.

lo) lerf(orii this comiputation efficiently. the function ti e> bIt et . Flie fun ict a i! operates

Ii three step~s. The first step (convert -to-bset s)looks itt each hdock anl set.- up an;

an xiliary (dat a structure cont ainrung bit set repre-,en at ii fi ,r helt li.ptt variii tleS. the(

o)1ut put va riables. and an initial gues-s that there are no i lV\t' var~ables. (The initeg4er 0

representsl. ant enipty hit set.) This auxiliary st ructutre ! is deiiicd by tile third foriti in

Figure 1.3 and is stored in the temip field of the block.
-~ The seconld step (perform-relaxation) (let em ies. which va riable, are live. '['Illis is

done by relaxation. The initial gesthat tlIerc ore io 11%, .i,.ri1,1es in any bloc'k is

successively Un proved lunt il the correct answer i>, obtained.
Th hr tpIcnet-from-bsets) operates iii tie(rever~e 4f thet first step. ELai'l

bIl wk i inspected and the bit set representation of the liv.e variable> is converted 1111o a

list which is stored in the live field of the block. The rest of the(teiiporary InItfor Iiatioit1

1.5 (listarIe1.

Onl each cycle of tile loop 'in perform-relaxat ion. ;u b)iooik K examilned to del erinel"

whet her ii t%-(lieet has to be chianged. 'lo (1o lIi~.lie- - iccte,-r, of* lhe block 'mc,

Iinspect ed. Eai-h successor needs to have available to it the variables it readls plus tit,-

* . variables that art- live in it. The total set of variables iettled bN all o4 lie suces-t)r>

tog~et hr 1V comiputed by using Rlogior. .A new estitnia te of the variables 'xhtch arte live(
Ii rie current block is obt ained IA' t akinrg the differenice I'iglogandc21; of the set 4f

variables needed by the successors andl the variables woritteni 1, v t11tv cuirrenit block.

If' tbis new estimiate is different fromn thet cuirrenit ecilnlttc of whtat varia bio > are live.

then thle estlimate is changed. In addition. if the estiate is cliantilt'd. perform-relaxation

has. to inake sure that all of the predecessors of thle cii r vet block will he examilned to
* ~ ,ef if the new estlimate for the current block reqiires their live estlinates to be changed.

This, P donie by adding each predecessor onto the list to-do iiiiless it Is already there. As

solit as the esthiates of iveniess stop) changing. the cttiptita t lla7 ';I! stop.

Stimniary. [Fle func(t ion determine- live is a pairt I(J; ml. IT() it it 'a ti file if I lie wa.
)Sl expre. sis are intended to be used in two wayi.s. [oti- xt, stn are tised in1 ;1

niuiibt'r ot plaes to express 'oiipiitat ions %h icli %Nold fjliws'AI lot ,x prv'sst''Ide learl

loii) 'r le's efficit'Iiv a, seqlnite fuinctioni vxprt-'s'aiio. c, t-int. 'Ii'' niaii e\ttit

i 11111 tihi i exprcsscd as a loop. [Ilis Is d10111. lot .;i-) (icr 11017e~ini l

'iI tl(,Ii 'l iiiiittioli ex pres itt) lend t ht'nselves to v t'-)t .ot IT r 1 x tIIti 1,_ilgomt 1111.

I 1 highlights, thle fact that oss t'xpressioti,, are ntii it ttlitd ttt reTidltm lootp, owti imel.

obtit)f-tt'. but rather to provide a giedt k IIIpr.hAeti ii tl ilw)ht\l >ii t*, liea't litaitrity

% % %

'p

-- ~~~~~. -. -. --6 -NVk vWrW . . -

(defstruct (block (:conc-name n11))
code ;The code in the block.
predecessors ;List of blocks that can branch to this one.
successors ;List of blocks this one can branch to.

' inputs ;List of variables read by this block.
outputs ;List of variables written by this block.
live ;List of variables that must be stored.
temp) ;Temporary storage location.

(defun determine-live (program-graph)
(let ((universe (list nil)))

(convert-to-bsets program-graph universe)
(perform-relaxation program-graph)

-(convert-from-bsets program-graph universe))
* program-graph)

(defstruct (temp-bsets (:conc-name bset-))
2 inputs outputs live)

(defun convert-to-bsets (program-graph universe)
(letS ((block (Elist program-graph)))

(setf (temp block)

(make-temp-bsets
:inputs (list->bset (inputs bJock) universe)
:outputs (list->bset (outputs block) universe)
:live 0))))

(defun perform-relaxation (program-graph)
(let ((to-do program-graph) block live-estimate)

(loop (when (null to-do) (return (values)))
(setq block (pop to-do))
(letS* ((next (Elist (successors block)))

- (next-needs (logior (bset-inputs (temp next))
(bset-live (temp next))))

* (total-need (Rlogior next-needs)))
(setq live-estimate

(logandc2 total-need (bset-outputs (temp block)))))
(when (not (= live-estimate (bset-live (temp block))))

(setf (bset-live (temp block)) live-estimate)
(letS ((prey (Elist (predecessors block))))

(pushnew prey to-do))))))

(defun convert-from-bsets (program-graph universe)
(letS ((block (Elist program-graph)))

(setf (live block)
(bset->list (bset-live (temp block)) universe))

(setf (temp block) nil)))

0 .Figuire 1.3: Live variahIe na!\

-%

%~V' ~Vk : ~ : ~ \2:~~:,

%, 00

2. Reference Manual

this sct Ionf is orglanized around1 de ,crit,it I if he va.ii I!. T, .- T

ported bY thfe o4ss iacro package. Vitchdctlefptiont iiAL_:l!>w -ini

he iitiiiiit s andI results of tile iinci on ''rftirn ':z .. Vr a

the heit(lers are (luplicat ed lin Sect itn 5. 1 it Se Ii i In it , e I"iT" ,1 1-re I

o irder tn d sho"- t he page where theit funct Ion or!Ut t -,t- .~sri hed .
hl at reference I'lanulal like this onei jI Vavt '>t ru'-

~epattelyand (-otipletelV. However, this- Irtevitaivlea i> itdt t

ec a It i 'erv thing4 Is related to evt-rvilhjng else. lltt(1tiri,, tIie ;, .1 \,

i n w lije h h ave not been di scuISed. T bw reader i> IIn C%) r a) t r,.

dlocumeni t and to realize that mnore t han one, reali ngt will p rohaW. be, ntii Iru-- if r% ii

to gain it comp Ilet e understanding of the oSs macro pat-khagi

Althou-0h the following list (if oss functions is Llf2It. it tiolilii ltnt i)(Takeni t

plet e. F very effort has b~een mfade(to provide a idet t u kititil pridel1 it f',ml;
However. except for a few priiitive formis, all iof t lI~ hin ion ul laic1 11,1\e lu- Iti, ~I
by the ui-er. It Is hoped that uisers will write tuaiiv ninre, >iich iottiin.

-ONO for Presentt Iing at wvide array of predefinedi funcldtons ti1 -pt J) er I' -t. 11 ~
thfe widle variety o f funciIons t hey c-a ii write for t i ->.

Restrictions and Definitions of Terms.

As, alluded to in Section 1. there arca tit Tine111r It 71' t FIIII1 r0c1. 11 Ii~

aret, upossil~e to violate with the faclilities pro% ivieij\4fla .' r'r tl~fli

not think about thes-e restrictions ait aill.
Thie oss mac-ro package checks to see that thlereitt: ufTroit-Ie-li\.

on ;In expression by expression basis. Wheneve r f i~ ii.a r fte ai

* s,?ied. There is no need for programmiters to worr) ilt i I i-- i- ft~ II! ol t, i)t

i Le(e errors occurs. However, when ,uch ant error occurs. ! Iittit lun pri-slui iha

- ta: it gI in order to alleviate t he prol-mn
enthat simple oss expressions are ve(r% ifllukel\ tu, ;uat [an of thle, rest rictltot> .

it I-at:otilde to skip this sectioni when fir- t readlinLf thn- t.Atlii. li(WeVer. it is ueIl
* i r;f I-is, set, iin before trving to debug comuplex 5ixpeti

'Lnsio blelow starts by leinirg twi k-v% arnt v ni i ucit>au
it' ;;OtuiiI hih are uisedl to catego:rize the oss fitit li -stih-, Iiti i-ii t

11ti -iiahtd See 6 for it cipiittj 'i di., -i >>in i" ;ill I i i- ic tt u I

)n-1i-Itie and off-line. Siij~ p I tn haf, i- anos- III in oi iln rad tico ifwt-
i; ,-:,ird ~jco e o o e s~w (1 ~ ti

% 1

Restrictions atid Dofj nit iols I, I'Crrii.

"'. ,l,, ,ll s. If at f is riot on-line1. the'n 1: i o,,,f-linC.

% In the context of oss expressio,. ,h Ierm t -line is ttenerilized o Ihat it a ipplie>

h) Tld*%Id M I S 1 it pIIlM I)It IWOi it adlritoil to) \'lol - fi TItO I . An ()'iS p()rt
" I ot-line i f the pIrOcessir at It port a)waYs to!low> the rl 1, 1l - i, chroi1,,'l p;i? I ,r

% de "e5 ibed above. Otherwise. it i. o f -line. From t his point , 1,v, a f ufiC io n il hft,

iff all of its OSS ports are ol-lint'.

['he prototvpical exaIlell' of" ai il-1Th(.S fl:lCUtiOU is TmapF (which ma p- .t furl ',

over a series). Each time it reads at; input 01(e11ei1t it applies lie I Iappe, fuicT,, ! ',,

it and writes an output elteiient. III toritrast. the iucltion Treiove -duplicates \Jijf.h
removes the duplicate elements from a series) is not on-lue. Since sone , ke ii11t11

elements (10 not become output eleriterits. it is riot possible for Tremove-dupl ica tes

write an output element every time it reads an input element.

For every oss function, the docunentation below specifis wnic[. prts are on hPIoF

and which are off-line. In this regard. it is interesting lo note thal every fmictiono w hic(h

Iithas only one oss port f e.g.. enuimrators with only one output aid red'ic'r %vith ,,nlv
J-' olie input I are trivially on-line. The only oss functions which hai, off-li.t0' P),rt- alt'

transducers

Early termination. Au important feature of OsS function., is the .ituationz i-der
"*- which they terminate. The definition of c ri-line above requires that o-tir " func i,..

N must terminate as soon as any serie input runs out of eleluwnts. If an OS, fci ction can
terminate before any of its inputs are exhausted. then it is an early ti'riimator. Ilhe

degenerate case of functions which do not have any series inputs (i.e.. cnuierators) is
.. categorized by saying that enumeralors arc early terminators iff they can terminate.

As an example of an early terminator. consider the function TuntilF (which reads a
series and returns all of the elements of that series up to, but not including, the first

element which satisfies a given predicate). This function is an early terminator, bccaue

it can terminate before the input runs out of elements.

The documentation below specifies which functions are early terminators. Besides
enumerators. their are only 7 oss functions which are ,,arly terminators.

Isolation. A data flow arc 6 in an OSS expression X is isolated iff it is possible to
partition the functions in A into two parts Y arid V in such a way that: b goes from Y

to 1'. there is no OSS data flow from I to ', and there is no data flow from V" to 1'.
For example. consider the OSS expression (lots ((x (f y))) (i (h x (g x)))) which
corresponds to the graph in Figure 2. 1.

f 2 hS .2 - g -[

Vigiure 2.1 P1arallel data flow palhus in ait expression.

I.. . hi,' d; a lw art- K, i.,s,,It . I , hm% thi.s e,, mierel 'y has to partition the expre-

sinl I that f. g. aid h are onI one ' side amid i is orl the other. 'h,' question of whet her or

~%

I. ~%

riot the other dlata flow% arc>, are i,olatPel i-. inkr,, 4I oiph -i , I , -r.. II,~ -

partition. then I iust cross thit . partIt Ion io, -I. V c-i; f'.:. is -k e- (I l t irric,

a non-oss value. (This is true no inatter wkhitt kiinu- '.idl.aL p'ts"-.)%(.r f'.t Il't'lt I I['

rel at ed ,It uat Ion. P'2 Is I ,olat ed It If(t an d tl I't ore o' 1 1(,- 1t 111114() iti

considler the arc !iI. Here there art- two pnh'iiilhlt. 4r-or ic :i?.

(,2 and one which cuts , 3 . The datai How arc ,I I, i0,trI r j, int 4t,4r

or 3carries a non-OSS valuie.

The concept of isolation is- extended ti iitii- itlii ''~4- ~t-*' -. A" ni 11 4

atni expressioll N\ I,, istlatt-'(it' X (.;I IIe pairlt i n ii, I I j-'.i rT- 441) - h I

everY dlata flow originating on p) lot- frImn). i ') I ,' Ii il i 'iw,% fir~ii 1

a non-o~s data flow, and there is no data !i4)W tr~ii 'I, 14 .t ilipil q /I ii1 'jr541

X is isolated iff X can be partitioned 'ito 1 i W part, mili -il: thatt: tit' dtai fi14W

termninating on q goes fromn Y to 1'. every ot he-r (latatH) li-iii h t , a nui-t oss (lata

flow, and there is no data flow front V to 1'.
For examiple. in Figure 2.1, the ouit put.- (if f and h arc, ida .1, Is I te Input ilt

Tfhe Input and~ output of g are isolated iti f Aituie 1d T lit ! .Ic. 'I liIiplt i f)I

are isolated iff the data flow arcs teriinatlnt!, 41 tIth: ii r,, 4 ~iid
Non-OSS data flows must be isolated. lit order f aft 4 s, expre."i44n 1, 4

reliabl\ converted into a highly efficient loop. every !!ti(s datt lo%% lin It iwist le

solated.\ As an exam pie of an expression wi ere t his I, noft Irooi'. 44 4l -. Ider thfe followiTn LT.

* lii this expression, the (lata flow Iiuipleiite1 b)\ thle ,;triablie total]i, not isolated.

(letS* ((nums (Evector #03 2 8)) ;Signals error 16
(total (ReduceF 0 #'+ nums))

(Rvector UI nums total))

(The basic problein here is that ,% hi le thle eleiet ts creattedI by Evect or are be)411 iiseul

to4 colinpute total, they all have to) be saved so thfiat thle \ canI be u seVl agai ii later I It

i)rder to perforiii the indicated (Iivisions. Eli inin at ing the ieed for s uclh storage isthe ke v
~ 4 source of efficiency underlying 055 exp~ressions.)

Off-line 055 ports must be isolated. InI order for im 055 expression to~ he rehlabl%

% 'on verted into a highly efficient loop. every off-line port imust he isolatedl. As an exanulple

(of ant expres-.ion which has an off-line output whichi Is niot isolated. conisidler the folowing.
% In Ii> expression, the data flow inipleitiented by tiec variable posit ions is not isuoiat ed.

(.letS* ((keys (Elist list)) ;Signals error 17.1
(positions (Tpositions keys))

(Rlist (list positions keys))

di het ai prohleni here isthat silice Tpositions 'Kips wnill coelt t.it (if I IIn iIIlII

Tpositions -oiinetiiiies has to readl several iput 4'llir'Iits, lief4rf4 It cait prdi~ t1he iiit

i litplit v'lvineiit . This forces i n unpredictable indwii~r If elvin'uent ofii keys ito III' a~c\4'4

I ht the It,% 1; t be lisedl lat er when creat ing list- . ,I. !i e eItI1;t itit I 1- t I t c livied tfw -I,

I it rat-fe' j, I It,- iiair -,oil of o.ss exlpressiji-.

CZode copying. If an 055 expression \'iolal4t.-. ei 1!w! 1~ 11 11[(;114 rt ri(j441:-, It,

p r, ItItIi , i ATI i way, be fixe by'(l) (')VII W ('441' i t 1 1 11,, d41,i 4 llw pr pow !it it'-.? 4

* lieco~hrs ti4)latedl. For Instance, the exainple ;llovu iof ;ii; s ,xpfr,'-.-T1 UIII 'A I-:h

n'nl 01s datta flow Is [Iot isol at ed can TIb fi Xed a, fol lit

96d i % % I

(lets* ((nums (Evector #(3 2 8))
(total (ReduceF 0 #'+ (Evector #03 -2 8)))

-. -(Rvactor (U nums tota)) -, (3/13 2/13 8/13)

It \Volild lhe 1o>ld hrI th1'.icopcae . noia al cp ocxhiee

eithter (it I [ie, ;>ilatii re~' rico-lntI, violatIed. Hiowe-,er. t li I. risot dlne for t wo reai i4i>.

[jrst' ItIt , sl- etc It I e Lt. inpt 1 r i1) pit t ;ire Iin vol ved. C (Col c.)T,"I I I I 1t0n r i I, c()r rec

call liro(l 1(1 larite amiti tiit: of eI (xtr a corn tiot ioil

A\ ilaftr roal of)ss expre>>ttrt>i 1t eiiitiring that expre ,sIonis whic loo >nnliiple to

-~coitilte acit allv are sinple to coltipiite. Auitonaically liitrodiiin, it i-tg ariionilt- of
- a (thitn na ('mnpuit at in withow ii he Ir~tainr k nowledge would vilth iis g!oat

-. At th~ervr least. leaving codie copying to programes aksieiiaarofxht

expensive to con te and what is riot. Looked at fromt a itore posit ive pers j)c't xe.

it encotiuges t Item to t hi nk of wvays to Cotmpute what t heY want wvit hout d,4 (ode

For i ast an ce. consider the the examnple above of all Oss expressiont inlw h I~c iin o H'- line
port *is niot isolated. It might he that case that the programimer knows that list dtoes

.enot coiitai n an v mil! elemten ts. and that Tpositions is t herefore inerely hei ng ilset! to
* ~enhirerate whtat the positions of' The elemients are. InI this sititation. the oxw~ iCanl

he ixel a fol -s . wicih dIoes not re(I i re any code copy ~ng. ('1 he key insight here i

Him athle posit ions do niot actiial dep~end on the value i the list.)

* - (letS* ((keys (Elist '(a b 0))
1 1 %(positions (Eup O))

0 (Rlist (list positions keys))) z:; ((0 a) (I b) (2 c))

I iterst iiglo niote, thl, if all expression Is a tree (as opposed to a graph as

in Figuire 2.1H. then every dlat a flow arc and every port is isolated. This is why oss
expressions, which do niot Contain variables hound hy letS. lambdaS. or defunS cannot

violated1 either of the Isolation rest rictions. This is also why code copying can always fix
anyv violation codle copyi ng cani con Vert anyV graph into a tree.)

% ~On-line subexpressions. he'l(two isolation restrictions ahov-e I)Crniit a divide and
C Pl1iquer approaili 1, Ihe proct- I rg of OS expressions. If an 055 expression obeys, the

is olation restrictions, then it canl he repeatedlyv partitioned iintil all of the dlata flow in
tflid sii hex preo rImi fronm all on -Iiline ouit pit to an on -line Iinput . The sithexpressions

A~cjreiiain iil'r id, otingm ;re referred to as on -hu i exesi t.

Termination points. I lie fnrtrtn' in) 'ach onl-bite slnhexpr sioll (.all he div-idedi

"'h) ocLa>-e-: tliosC WhicII ;IY termniiriaiol points allid t hose which are niot. A. function

a ; t'rIri1inat It poli"~: it c;ri leriitiinaIte before any ot her fuinction ilt The suhbexpression

t crti: ili;i te, [heiire are two r' sfor functions heiinqg terminiation poIits. FitinctiOtis

'Ahich ir, earlx terlltator> atrt Aalway tern iiation points. InI aildlitioil any function
Wfilch reail> lit oss >e'rwe- wh> iih ct-ue> frontui adifrererit on-linec slihex[)ressiuli IS a ternInI-

* Data flow pathis betweeni termination points, and outputs. III order for art

~~~i :v 15 aprc -tori to he, reliably cotnverted into a hlighlv efficieitt loop. it twust h~e the ease

e% .. % N%'V< -'9." I. NV, . ,p, ~-"3 I



12 R Wei(Xa ima

t hat wt luIIllI each o I -l e I > If ilbt-xI pe'Iii t h re a ., fl'A I nk1t -It 'ru) i ach I crlII I I at h )T,

poinit to each output. A,; ant e'XamIple of ;in .)'' 1pjrt:IurII 101 wich thi11 jtropert,

dtoes not hold[, consider the followi1ng 1)itrt I it Iriir dI I , r t i1 e x )re>,I r onIiTt W two t o-
line stillexIprtssions. onie containing list mdl uil, itl~I~ ~rtlii eke. IIiI lie
large un- line siibvxpre sion. the two I itiee u EI!v a to ,i r termi itat I( n, II li F 1e

program is, erroijeoti>:. becauise there 1,i> n ilat 1 i. 'iiVi The Teriniration polii
(Evector weight-vector) to t lit- uiit ill u ( Rvector z:TI-xr,,'s,)

(letS* ((values (Evector value-vector)) ;Signals err r 18
(weights (Evector weight-vector)
(squares (* values values))
(weighted- squares (* squares weights'

(list (Rvector squares) (Rvector weightec-sq-,ares)

( The basic problem here is that it' The iiiiiihe Fal- VOL-C !-~ 2vecI

ilan the number of eleiments 'in weight-vector. II!, -ii; i? . squares \ ilv

ito continlue even after the computation o1f weighted-- cq.,ares 1,;1 - *IT I jdIpe. "I

kind ol partial contirmnilg evaluation I:,01o slipp-1rtedl 'i> .~ kc.e iy

it was- Judged that it requires too iich uverliea l in T, i .1r,. t~- ilit

when. )
* IA ~~hen anl ()Ss expresion violat e theit rest rict I- 1i 4.. ' i ,ti

fixing the problem: reducing the iiilliier of te'rniiii i i- i,- fl i Ti. I

itvI% between termination points and ouitput' . ad l '!I' !lll. iwi .0 iHi-

The easiest way to decrease thet inmber III termiiiii tve t, re-H plc earlI

terminiators by equivalent operations which are niot eirlN termiilati-r- I her examnple. 11

page 36). If an early terminator is not an enumerator. lieli thj it-i alwaN be (lone
without difficiltly. Thfe dociten tatIoni below . (les ri ;InonII c-arkI %; vri ait fur e~ieh

early termiinating transducer andl re(luieer. If munipit)le '-i iiie'rators arc I tIe lproitleiii as ii

the examiple above) decreasing the numiier of teriniitlion 1 ioj lit s isisu ailvy nit practical.
H owever, >metiniies an enumerator whtich terminates cam be replaced by an enuminera tor
which nex er terminates.

The connectivity het weeni t erination poinuts anridI pu t h e increased by tisimrif

the fui c- ion Tcotruncate. As discussed on page 2.5. tOil, 1, the p)referred way to fix thle
problemu inI the example above.

Ifwirst comie-, to worst. code copying can alwv- 1w iise-,d to fiK the problem. It is

* ~ ~~ii ipos, Ibe for an on-li ne subexpressnr to \ lolat e tilie r>trtitialu\ e unless it c0i1I) it es

'4 ~T wo dIiffereiit out puts. This lit turn Is imupossibl~e tiniess lie oss expression as a whole

contalins variables boiliid by letS. lambdaS. or defunS. (Code copyin_ c-an always, be used
to break the tuibexpression iii iquestinouinto11 two part>- each of which compittes, one- of lie

General Information
llefiire idiscussing tilie idi\ irdluial (PSfl~t il;Ii InI nevt 111. ;I few ginieral commnients are

ini Mor. jrst . all of thet ()s, fuintinos and lor,ii are li-finedI Mi the( package OSS. To miake

theicse riamiles eaily ;I cce>,he oIT,,, theit-ag OSS (i.-v eviluate (uise-package "OSSV' )

If t his is not (lone, the name,, will have. to be piefixt-d 'ith Owlts v e they are uisedl.

% ,4%4,%



(;eneral Inforna t i, 13

Naming conventions. The naric, of the various oss functions and h'ri. follow a
5 - strict n titing convention. The tirol letter of an o0s function niame indicates the I vpe of

% .'- function as sfhwn below. E Iettr co-'ire ar wrilten in upper case in this docunient
Ic ase does riot matter to (ommon Li,) ) and each letter is intended to be pronomced I as
a separate syllable.

E Inumerator.

T Transducer.
R Reducer.

The last letter of each (oss special form is "S". In general, this indicates that the forii
is primitive in the sense that it could not be defined by the user. Some oss functions
end in the letter "F". This is used to indicate that the function is a higher-order function
which takes functions as arguments.

The naming convention has two advantages: one trivial but vital and the other more
fundamentally useful. First, nany of the oss functions are very similar !', standard
('oniniOn Lisp sequence functions. As a result, it makes sense to give them similar naiies.
However. it is not possible to give them exactly the same names without red(lining the
standard functions. The naming convention allows the names to be closelN related in a

* predictable way without making the names unreasonably long.
.- Second. the naming convention highlights several properties of oss functions which

make it easier to read and understand oss expressions. In particular. the prefixes high-
",-.. light the places where series are created and consumed.

--. ,', . The names of arguments and results of oss functions are also chosen following namting
l °conventions. First, all of the names are chosen in an attempt to indicate type restrictions

{e.g.. number indicates that an argument must be a number: item indicates that there is
no type restriction). Plural names are used iff the value in question is an oss series (e.g..
.umbers indicates an oss series of numbers: items indicates ai oss series of unrest ricted
valuesf. The name of a series input or output begins with "a" if" it is off-line.

OSS series. Two general points about oss series are worthy of note. First. like
Comnulon lisp sequences, oss series use zero-based indexing (i.e., the first element is the
0th element). Second. unlike Common Lisp sequences. oss series can be unbounded in
length.

Tutorial mode. A prominent feature of the various descriptions is that they contain
., many examples. These examples contain large numbers of oss series as inputs and

ohitl)uts. In the interest of brevity, the notation [... I is used to indicate a literal oss
series. If the last entry in a literal oss series is an ellipsis, this indicates that the oss
serie, is unlimnded in length.

0., [2 3]
4[a b (c d)]

[T nil T nil...]

The notation C... ] is riot supported by the Oss mna'ro package. It would be ,trai ht
forward to do so by using set-macro-character. Perhaps even better, one coibl use
set-dispatch-macro-character to support a riot at ion #[.I..] analogou s to #(..). How-
ever, altlough literal series are very useful in the examples b-low, experienc,, suggiests

IJO ' ever"

,''.. . .



14 Referen ce Man ua l

that literal series are seldom useful when writing actual prograI -, tna>ninuch a, t iI i
the case. it was decided that it was unwise t USC Up One of tie sniaidl set of chiLracter.
which are available for user-defined reader macro, or user-defined # dispatch characters.

Many of the examples show OSS expressions returning OSS series as their values.
However. one should not take this literally. If these example.- are typed to Comiion lisp

as isolated expressions, they will not return any values. [hi., is so, because the OSS iacro

package (loes not allow complete oss expressions t,, return ()SS series,. ['te examples are
intended to show what would be returned if the example expre>i), were nested in larger

expressions.

So-ss-tutorial-mode &optional ( F-or nil T) =. tatc-of-tutorial-rlude

The above not withstanding, the oss macro package provide.- a special tutorial mtode

in which the notation [... I is supported and 055 expressions Cal return (potentially
unbounded) oss values. However, these values till cannot he stored in ordinarv variables.

This mode is entered by calling the function oss-tutorial-mode with an argument of T.
Calling the function with an argument of nil turns tutorial mode off.

Using tutorial mode. it is possible to directly duplicate the examples shown below.

However, tutorial mode is very inefficient. What is worse, tutorial mode introduces non-
correctness-preserving changes in (5sS expression.s. (For example, in order to correctly
duplicate the examples that illus-trate error messages about non-terminrating expressions
and the fact that oss series are not actually returned by complete oss expressions.

tutorial mode must be turned off.) All in all, it is important that tutorial mode not be

used as anything other than an educational aid.

OSS functions are actually macros. Every oss function is actually a macro. A-

a result. OSS functions cannot be funcall'ed. or apply'ed. When the user defines new
oss functions, they must be defined before the fir.,t time they are used. Also, when an

oss function takes keyword arguments. the keywords mu.,t be literals. They cannot be
expressions which evaluate to keywords at run time.

Finally. the macro expansion processing associated with oss expressions is relatively
time consuming. In order to avoid this overhead during the running of a user program.
it is important that programs containing oss expressions be compiled rather than run

interpretively.
A minor advantage of the fact that everything in th, oss macro package is a rnacro

* mi that once a program which uses the macro package is commpiled, the compiled program
can subsequently be run without having to load the oss iliacr() package.

A more important advantage of the fact that everything in the oss macro package is
a macro is that quoted macro naies can be used as fincti,mal ariu,ents to higher-order
WNs funictions. (In contrast. quoted macro names camiui be used a, fIilictional arguments

to higher-order ('omnion Lisp functions such is reduce. .\lthough this may appear to

be a minor benefit , it is act uallv quite useful.

Enumerators

E ~nuimierators create OSS miItpi., lased on ni-in () ispt.,. Iliere are two ba,c ki,
,it ,,nii'nerators: ones that create a, ().,S sries . a.e, oi i,, e formula (e.g., en merating .-

% % % % %



Lu nier-a tors 1 ..

* d ¢j~it'ce t[" iiiirOT'er., anid ,II'> hat create ai oss series containilng the elvncii , (si f ai

* " ,,- (r, ate data -t ructure i e.g.. eutnieratin, the elements of a list ). All the pre'Iefinled

., '4 N,mnirri 'r;at'r. art, oTI-lint In tgenir;il. the Ire ,ill earl, t.-riIIItrz liowever, a- i()ted

)elohy. in soiie sitlattion'. m.it t uewierators pr,)due unbodiii(ied outplts itiid are not

.early v er:iiirnators.

e Eoss &rest cxpr-hlt ="- itemlis

'th e expr- li, t consi.t of zero ir niotirv expressions. The flnction Eoss creates an Os

series con tai ni the valEe of thes, expressions. .very expression in expr-list is evaluated

,,t,re the firs t oul it u tle'inn t i ; retiirned.

(Eoss 1 'a 'b) => [L a b]
(Eoss) =., U

To get the effect of ,lelaying the evaluation of individual elements until they are

needed, it is necessary to define a special purpose enumerator which computes the indi-

vidual items ;as needed. Ho wever. due to the control owerhead required, this is -,ldoni

worthwhile.

It is )osihle for the expr-list to contain an instance of :R. (This must be a literal

instance of :R. not an expression whi",h evaluates to :R.) If this is the case. then Eoss

produces an unbounded oss series analogous to a repeating decimal number. The output

cnsists of the values of the exprions preceding the :R followed by an unbounded

nunmber of repetitions of the value., following the :R, if there are any such values. (In thi,

J situation, Eoss is not an early terminator.)

(Eoss 1 'a :R 'b 'c) 14> [i a b c b c b c ... ]
(Eoss T :R nil) :4, CT nil nil nil ...]
(Eoss 1 :R) [ i]
(Eoss :R i) - [1 1 1 ...]

*,Eup &optional (start 0) &key (:by 1) :to :below :length => numbers
5-", This function is analogous to the Loop macro 2 numeric iteration clause. It creates

an OSS series of numbers starting with start and counting up by :by. The argument

start is optional and defaults to integer 0. The keyword argutient :by must always be a

positive number and defaults to integer 1.
"' There are four kinds of end tests. If :to is specified. stepping stops at this number.

The number :to will be included in the OSS series iff (- o start) is a multiple of :by.

If :below is specified, things operate exactly as if :to were specified except that the

number :below is never included in the oss series. If :length is specified, the OSS series
j- O l il length :length. It nust be the case that :length is a non-negative integer. If :length

i .m-itive. the last elenent of the oss series will be (+ start (* by (1- :length))). If

,on',' of the termination arii iient s are spe(ified. t he output has unbounded length. (In

:hi- -it oation. Eup is not an early terminator.) If more than one termination argument

S, )',eifie'd. it is an error.

(Eup :to 4) => [0 1 2 3 4]
(Eup :to 4 :by 3) - [0 3]

*' (Eup 1 :below 4) -[- Li 2 3]
V (Eup 4 :length 3) => [4 5 6]

(Eup)-- [0 1 2 3 4 ...]

N0-- VP10 w 4 J
VI



16 Reference Manual

A5 shown in the following example. Eup does iot assume that the numbers being

enuirnerated are integers.

(Eup 1.5 :by .1 :length 3) => [1.5 1.6 1.7]

" Edown &optional (-tart 0) fkey (:by 1) :to :above :length => numibers

The function Edown is analogous to Eup. except that it counts down instead of up aid

uses the keyword :above instead of :below.

(Edown :to -4) =:> [0 -1 -2 -3 -4]
(Edown :to -4 :by 3) => [0 -3]
(Edoun 1 :above -4) [1 0 -1 -2 -3]
(Edoun 4 :length 3) [4 3 2]
(Edown) 4' [0-1-2-3 -4 ... ]
(Edown -1.5 :by .1 :length 3) --' [-1.5 -1.6 -1.7]

, Esublists list &optional (end-test #'endp) =4' sihlits

This function creates an oss series containing the successive sublists of li.,t. The end-

test must be a function from objects to boolean values (i.e., to null/non-null). It is used

to determine when to stop the enumeration. Successive cdrs are returned up to, but not

ncluding, the first one for which end-test returns non-null.

(Esublists '(a b c)) :: [(a b c) (b c) (c)]
(Esublists '(a b . c) #'atom) 4' [(a b . c) (b . c)]

fhe default end-test (#'endp) will cause Esublists to blow up if list contains a non-

list cdr. More robust enumeration can be obtained by using the end-test #'atom as in the

S~second exanple above. The assumption that list will end with nil is used as the default

case, because the assumption sometimes allows programming errors to be detected closer

to their sources.

" Elist list &optional (end-test #'endp) :> elements

This function creates an OSS series containing the successive elements of list. It is

closely analogous to Esublists as shown below. In particular, end-test has the same

meaning and the same caveats apply.

*(Elist '(a b c)) =:4 [a b c]
(Elist '0) []
(Elist '(a b . ) #'atom) => [a b]

(Elist list) - (car (Esublists list))

Tie value returned by Elist can be used as a destination for alterS.
' (let M(ist '(a b c))

(alterS (Elist (cdr list)) (Eup))
list) :4 (a 0 1)

9...

0-%

,t . € ' , re.- % %,. N ,, %. o ' . , .. . 'e -. , -, .. , ,,.



Vn uznerator, 171

9 Ealist ali~t &optional (test # 'eqi) -- keYs value>

This funict ion ret urns two (ISS >evries coit aining keys atid their az,>toc tied vaki c>,. fite

firt leent of keys s the key 'Ti tl~w firot erir\ 11 ,aI'.t. the, fir,, ,'Iejljferl ofjl h

value, in the first entr y. and( m() ott. -Ihel alliiiimst he ii proper list eniilir ini ni! andi~ each
en t r 'v In aLt Iziust be a CORS Cell or nil. Like assoc. Ealist skip, (*!!t rie Which) are nil
,trid ent ries which have the samne k,,y at, anl earlier ent ry. I le te' t a rt_,ii tl iI ti 1I

* (let ermine when two keys are lietar,

(Ealist '((a . 1) 0) (a .3) (b . 2)) => [a b] [1 2]
(Ealist nil) => [1 [I

B~ot h of the series ret urn~ed by Ealist (,an be tused as destinations for alterS. lit

analogy with multiple -value -bind, letS ,anl be used to bind both valule, returnied by

Ealist.)

(letS ((key val) (Ealist alist)))
(alterS key (list key))
(alterS va). (1+ val))

alist) = M((a) . 2) ((b) . 3))

The OSS function Ealist is forced to performi a significant amiount of comiputation in

order to check that no duplicate ke ' s or n ull ent ries are being enumierated. In1 ait hlat loll

where it is known that no duiiplicat e keys or ri ull ent ries exist. it is miuch miore efficien t to

use Elist as shown below.

(letS* ((e (Elist '((a .1) (b .2)

(keys (car e))
(values (cdr e))

MRist (list keys values)) M ((a 1) (b 2))

e Eplist plist =: indicators vahiues

'This function returns two 055 series containing indicators and their associated values.

The first elemient of indicators is, the first indicator in the piist, the first elment of valuies

is lie associated value, and- So orI. The plist argument miust be a proper list of even

length ending in nil. In analogy with the way get works, if an indicator appears mnore

han once lin plist, it ( andl its value) will only be enumnerated the first t ilie it appear,,.

fBoth of the 055 series ret urnedl by Eplist can he used as destinations for alterS.)

(Eplist '(a 1 a 3 b 2)) 1:: [a b] [1 2]I (Eplist nil) z=' - [10
'The( o),s fuinct ion Eplist has to lptrforin a significant amiount of coniput ation in order

o check that no duii tat e inrd ica tors are beinrg entinierated . li a situHat ion where it is

known that rio duplicate iridicittnr vxj ,t. It i> mitich inuore eflicient to use EnumerateF as

(letS. ((e (EnumerateF '(a 1 b 2) #'cddr #'null))
(indicators (car 9))
(values (cadr e))

MRist (list indicators values)) z=' ((a b) (1 2))

% %. %. %



18 Rel'erence Ala ial

e Etree tree &optional (leaf-test #'atom) > odes

. This function creates an OSS series containing all of the nodes ii, tree. lhe( function
*z  assumes that tree is a tree built of lists, where each node i, a list and the eleiieril in -

the list are the children of the node. The function Etree does not assume that the node
lists end in nil: however, it ignores any lion-list cdrs. ( This behavior increases the utilitv
of Etree when it is used to scan Lisp code.) The nodes in the tree are enuimerated in
preorder (i.e., first the root is output, then the nodes in the tree which is the first child
of the root is enumerated in full. then the nodes in the tree which is the second child of

i root is enumerated in full, etc.).
The leaf-te_ t is used to decide which elements of the tree are laves as opposed to

internal nodes. Failure of the test s-hould guarantee that the element is a list. By default.
leaf-test is #'atom. This choice of test categorizes nil as a leaf rather than as- a node
with no children.

The function Etree a.ssumes that tree is a tree as opposed to a graph. If tree is a
graph instead of a tree (i.e. some node has atore than one parent). then this node (and
its descendants) will be enumerated more than once. If the tree is a cyclic graph. then
the output series will be unbounded in length.

(Etree 'd) =:* [d]
(Etree '((c) d)) = (((c) d) (c) c d]
(Etree '((c) d)

'(lambda (e)
(or (atom e) (atom (car e))))) => [((c) d) (c) d]

o Efringe tree &optional (leaf-test #'atom) =:: leaves

This enumerator is the same as Etree except that it only enumerates the leaves of
the tree. skipping all internal node,. The logical relationship between Efringe and Etree
is shown in the first example below. However. Efringe is inipleinented more efficiently
than this example would indicate.

(Efringe tree) = (TselectF #'atom (Etree tree))

(Efringe 'd) :> [d]
(Efringe '((c) d)) ':' (c d]
(Efringe '((c) d)

V'(lambda (e)
(or (atom e) (atom (car e))))) => [Cc) d]

The value returned by Efringe can be used as a destination for alterS. However, if
* the entire tree is a leaf and gets altered, this will have no side-effect on the tree as a whole.

In addition, altering a leaf will have no effect on the leaves enumerated. In particular, if
a leaf is- altered into a subtree, the leaves of this subtree will not get enumerated.

(let ((tree '((3) 4))
(lets ((leaf (Efringe tree)))

*g (if (evenp leaf) (alters leaf (- leaf))))
tree) --> ((3) -4)

* Evector vector &optional (indices (Eup)) => eletneut.

"hi.- function creates an OSS series of the eleniint s of a one-dimensional array. If
j IldiiCes assli tnes its default value. Evector enumerates all of the elements of vector it

order.

_P

6V



u rn era tors I

%: (Evector "BAR") [#\B #\A #\R]
(Evector "") z' [

Lot 'kcd at inI greater (let ail Evector enii t jrat Cs the eleiiienits of etor w hichI are

ndicat ed by the elenieit, of the O)SS series Inidices. T he Indices miust he n101-nreg1ati ye

Integers, however. t hey- do niot have to he in order. Lni erat io stops when indices rtiri,

out . or al iri dex , reater than or equal to the length of vector is en,-o iunte#red. Onle canl

use Eup t, create an index serit-~ which picks out a sect ion of vector. (since Evector t akes

4InI an ()SS series it is technicallY a transducer, however, it i, oil-l1ie and is anl enumllerator

iii spirit.

(Evector #(b a r) (Eup 1 :to 2)) z > [a rJ
(Evector "BAR" [0 2 1 1 4 11) = [#\B #\R #\A #\A]

The value returned by Evector can he usedl a, a destination for alterS.

(let ((v "FOOBAR"))
(alterS (Evector v (Eup 2 :to 4)) #\-) v) =>"F --R

e Esequence s eqiuetce &optional (indices (Eup)) => elemnents

The funictioni Esequence is the samne as, Evector except that it will work on any ('olil-

uion Lisp seq uience. However. sinrce it has to deternincit the type of seq uecc at ri nil ue.

it is inuch less efficient than eit her Elist or Evector. ( The value ret urnled by Esequence

can be used as a (destinatiorn for alterS.)

(Eeu.c 'bar).---Ebar

(Esequence '(b a r)) z4 Lb a r

e Ehash table => keYs values

This fuinction returns two OSS series containing- kevs and their assoc~atecl values. The

first elemient of kes is the key of the first entry. the first elemient of values is the value

in the first entry. arid so on. (There are no guarantees as to the order in which entries

will be enumierated.i

(Ehash (let M( (make -hash -table))
(setf (gethash 'color h) 'brown)
(setf (gethash 'name h) 'fred)

W) z=' [color name] [brown f red] ;in some order

lII the puire (orii iion Li sp \'er~lin of the oss ituacro package. Ehash Is rat her inethicieiut

because ('01mm mon L isp doe, riot pr' vil'' i icreinintal su pport for scan ning the elemients of

* ~~a hash table. However. M t he S viii hol j c Corin1101 Li sp version of the OSS miacro package,

Ehash 1 (piP ( efficientl

* Esymbols &optional (packaige *package*) ::' ,vnihols

This fuinr' ion creates an 095 ,,eries of the symibols in package (which defaults to the

ciirren t packa t' . ( F here are nio -oiarant ees as to the order in which synihols will be

enii irlierat ed.

6

Z* ZC --- e . W



20 Reference Alaial

(Esymbols) => Lfoo bar baz .. zot) ;in some order

In the pure ('oninon Lisp ver.,roi of thie OSS tiiacri pac-kage. Esymbols is rat her

inefficient, lbecause (oxrinon Lisp doe, riot p)rov-ide i iv rri jet al supp~ort for c.anint Ow h

symbols in a package. Howev-er, inthe Svnibilolics .(orinori .,I)p etr'ion of the us ii'iri

package. Esymbols is quite efficient.

*Ef ile namie =;> iteizis

This function creates an ()SS steriv, of tilie itvi'ii wriltteni in tOw ile i!Aiiii;Lir !

funct lolli colrubitnes thle funict iotialit Y i f with-open-f ile W ti hel act i (01 r,;d t r, iii

t he file usl~ ig read). I t is guia ra n teed t h at theit ti le wkIll1 h A ilo.,ed I )r reet I 'yent f 1 i InI

error occuirs.. As an example of using Ef i le. assl re i hat I lie- firinis (a). ( 1 2). indt T

have been written into the file "test. lisp".

(E i e " esIi p ) :> a.( )T

is EnumerateF init step &optional test => Itemns

The higher-order function EnumerateF is used to creat., new kinds (of enurierators. I ie
hnit mnust be a value of sonie type FI. The step argumient iiis be a nori-Ossucto

fromn TI to TI. The test argument (if present) uTwist be a nori-Oss function frurii T1 to

boolean.

Suppose that the series returned by EnumerateF is -5. The first output elemrent li&ha
the value So) = it. For subsequent elemients. So - tep(.', 1

If the test is present, the output consists of elemnents uip to, bult not icuntHie

first element for which test(S.', is true. In addition, it is ruiaranteed that step will not be
applied to the elemient for which test is true. If there is no test, then the out put series

will~~~~~~~ beo none egh I Is i ion. EnumerateF is not an early terinal or.)

(EnumerateF '(a b c d) #'cddr #'null) => r[(a b c d) (c d)]
(EnumerateF '(a b c d) V cddr) (' (a b c d) (c d) nil nil ... ]I
(EnumerateF list #'cdr #'null) E(Esublists list)

N If there is no test. then each time an elemient is output. the function step is applied to

it. Therefore, it is important that other factors in an expression cause termitiation before
EnumerateF computes an elemtent which step cannot be applied to. In this regard. it is

interesting that the following equivalence is almost. but not quite true. The difference is
that including the test argument in the call on EnumerateF guarantees that step will not

be applied to the element which fails test, while the expression using TuntilF guarantees

that it will.

(TuntilF test (EnumerateF init step)) ;t (EnuerateF mnit step test)

eEumerate- inclusiveF init step test '-4- I terns

I !w~ Im igier-order function Enumerate- inclusiveF :-the a iw ai, EnumerateF .v-pl
tloHt, l tevin for which fe ,t i, truc 1 srncluded ini tle outpui. A; with EnumerateF.

it ig-uaranteed that step w-ill not be aippliedl to) lie li-jiviint for wtil rest i.- rlie.

(Enuerao inlusveF (a ) OcddrUnul) [a b5'(

P % --. r

;A~ -A -A, -i



Y-n -Li-de 1r"i-Vi-r .21 x- T l ww

On-On-Lin Transducers 2

- . Iraisdticers comipute ()SS Neries from O)S series aii(I form the litart of iii,,i

I Thi secAt Ion itInd(I IW nextK oneI )Present Itire predeliriel4 111(l er' Ia 0atre

0o1-li1v iie.. all of their 1inus and out1 )uts, are, oni-line I. Ihf-e t ra-L.Eucer, ir', M.-d~ed
wuit b~ecaulse !it-ey carn he li-.ed iiorr flexibly than the lransdu, ers which arc otfrine. Ili

*particular. It is, im1possible to %ifolate tile Off-linie po(rt 1solatioii re,,trf iti cit lot rxi

ar I oil-li1ne t ra nsducer.

*Tprevious items, &optijonal (de'imilr nil) (amiun r 1) 4 - shIzft d- itefti'

j '~HIP, function creates, a series which i, shifted right amnourit eleiiierit-. Ih- Input

itliount1 1nmU- t be a positive Fligr.Ve shifting is, done byv ins-erliltr amroutit copjO5 (K

d\. (J~efaulit lIfm r mIs an( (I ,rl Ig Itu_ elemtent s from the end of it T.rlie u pt

is always the am e length as the Input.

(Tprevious [a b ci)zl [nil a bi
-:(Tprevious [a b ci 'z) => Ez a bi

(Tprevious [a b ci 'z 2) --: [z z a]
(Tprevious U) 0'

The word previous is used a,; the root for thle name of this fUtn~tOrr because the

%function is, typically' tied to Ice~ )rCViou1, Nale o)f a veries. Arti examrple of Tprevious
-. used in this way Is lhon corli t tion with Tunt ii bel w.

Ii) i lisert sotine aniount (f stufi f In front of a -eries wivt hi t 1 1 ,si g a uiv of the elements
4" * -' ~-.off the en.. is-e Tconcatertate a, -hown below.

(Tconcatenate [z zi [a b ci ) => [z z ab c]

*Tiatch itemns &key :after :before :pre :post ---- masked-it emsl

This funcrition act, lke at la tch elect ronic ci rcuiit componen t. Each in put element
causes the creation of a corresponh ng out put elemtent . After a specified number of tion-
ntull input elemtents have been enrit-inircred. the latch is triggered and the output mode
is, pernanerit lv chang-ed.

The :after and :before ariuitieiit, specify the latch pont. Thie latch point Is just
after the :after-tb nioni-rl nullvwr 'in items; or just before the :before-tb non-null

element. If neither :after nor :before is specified. an :after of I is assumed. If both

are specified. it is ain error.
If at :pre is sp)ecified. ever ,lcritien t prior to the lat ch point Is replaced by this value.

II it :post Is specified. 06, %alue usiied to replace every elem~ent after the latch point.

11 neither is spvcifivd. at :post of* nil isasurre

MTatch [nil c nil d ei )- [nil c nil nil nil]
MTatch [nil c nil d ei :bef ore 2 :post T) ~z'[nil c nil T TiI (Tlatch [nil c nil d ei :before 2 :pre 'z) cz'[z z z d el

A, it !ire rcailric examiplc-d if ising Tlatch. suppose that a programmer wants, to
write a pn t_ rai get -codes whIiic h take., in a list and ret urns. a list of all of thie iunbers
wic-h app1eawar in t he list aft er thIef secotoit (Inu i ib er in t he list



(defun get-codes (list) 
RfrneMna

(letS ((elements (Elist list)))
iRlist (Tselect (Tatch (numberp elements) :after 2 :pre nil)

elements)

(get-codes '(a b 3 4 c d 5 e 6 f)) c~'(5 6)

e Tuntil ' Iterrs =;> InItIal-iteuris

i hict ion truncates an OSS series of elenien ts biiued on i 05 >ert>Itboai

* vunt I-Vlit, out put consists of all of the elemients of itein> up to. )lit not including. Ilie(

hro leitieni which corresponds to a non-n till elemient (if 1b oi s. I'lhat is to)~iv if' the
t rs t Ii in -TIn ill value in bools is the rtIi. the (Jut put will consist of all of the elemtivl of'

I .teml uip to, but not including, the m t h. (TIhe OFetl~ Of Inucludi ng thle in th eleniient Ini
l ie o~ut Put (anl he obtained bv using Tprevious as, shown lin thle last exanile below.) In

a(lIlit ion. the output terminates as soon as eit her in puit ruin> out of eleinents even if a

l1011 null eleniient of bools has not been encountered.

(Tuntil [nil nil T nil T] El 2 -3 4 -5]) [1' 2]
(Tuntil [nil nil T nil T] Ell]) =:; [ll
(Tuntil (Eass :R nil) (Eup)) z=' [0 1 2 ..3
(Tuntil [nil nil T nil TI (Eup)) -> [0 13
(letS ((x C1 2 -3 4 -5]))

* (Tuntil (minusp x) x)) =:> [1 2]
(letS ((x [1 2 -3 4 -53))

(Tuntil (Tprevious (minusp x)) x)) =; El 2 -3]

If t I e iris in put of Tunt il is suich that it canl be li,,ed as at dIe tliinatloni fir alterS.
thlini lie, ') iit of Tuntil can he uised as a (lestinat ion for alterS.

(letS* ((ist '(a b 10 c))
(x (Elist list))
(y (Tuntil (numberp x) x))

(alterS y (list y))
list) => ((a) (b) 10 c)

-~ *Tunt ilF ;)7od it emns z=i initial-i tcruis

-1It;,n fuirn cliii I, the anie as Tuntil except that It takes a functional arll:iiiiienit in i ead
,t a ;,i ers of hoolean values. Thle inon -()SS fun ct ion pred is mnapped oo)er ltein- ili

o)rdetr To ol)tann a series of hoolean \iilines. iLike Tuntil. TuntilF is canl be uised ;is a
at iton Of alterS if iteins call.) "Ihe( basic rela tionsh ip bet weeji TuntilF arid Tunti 1

i, in t lie, last exaniple below.

(TuntilF #'minusp El 2 -3 4 -5] ) z- (1 2]

(TuntilF t'minusp (Eup)) ---> [0 1 2 ... .I
* (TuntilF pred items)

(letS ((var items)) (Tuntil (TmapF pred var) var))

I I,- fli!itIiiii Tuntil and TuntilF aire both Ii rl\ telinin;i'o, HII.-, iall oniietlille(

'intlIis w~ith the rvetr riii t i,it %voiu hin eich om,1ll nlbxlrwu~i there iinnnt

iti frot each tvriiiiiatii point toi 'oct it put. 14o ige thie iiiw thee

'ln, a:u ii~:n early terunilhn 1i- 'I'Select, ot Tiatch I, h ~ elow.



On- 'lie Ira n>11'i.or,

-, (Tuntil bools items)
(Tselect (not MTatch bools :post V)) items)

(TuntilF #'pred itemns)
~~\ '-_ (Tselect (not MTatch (pred items) :post T)) items)

*TmapF function &rest ltein.q-iist =: Items

T he higher-order ftincti~ ii TmapF is usedl to create sim~ple kinds of on- in e trian sducers.
It-, a rg uiieiis are a single hi ncilion and zero or inre oss serles. Th l un uti i ' rg'ii ent
mnust be a noni-oss function whilch is, comipatible with the niiber of input series anId the
types oft heir elemients.

A Single ()SS series is ret urned. ELch elenien t of t his series is the result of* app lvin 'r
funiction to the corresponding elemnien t of the input series. (T hat I's to say. if TmapF re
ceives a single input series Rt it will ret urn a single ot put S such that Si fun ictioii( R,
The length of the out put i> the Salic as the lengthI of the shortest input . If thierc are
no bouniided series Inplut's ( e.g.. iIf t here are no series inputs), then TmapF will 41"Wra tl M1a

unbi oundedl 055 series.

~8(TmapF #'+ [1 2 3) [4 5] ) => ES 7]
(TmapF V'sqrt []) => [I
(TmapF *'gensyra) z=' E#:G003 #:G004 #:GOOS ... ]

*TscanF { itlt funcl.tion Itemls => re> nit>

The higher-order function TscanF is used to create comiplex kinds of on-line transduc-
ers. (The namne is lborrowedl fromi APL.)I The LMit argumnent if present ) mulst lie a non-oss

alue of somne type TI. The functio argumient miust [b. a binary non-oss function fromt
0 ~T1 and somie type T)2 to TI. The items argumnent inust be an oss series whose eleiients

are of type T2. If the mnit arguinent is not present than TI iiiust equal T)2.
The fim fctionl arguItlerit IS im~wd to comipute a series, of accumitlator values, of' type Ti

which is returned as, the Output of" TscanF. The output is the samne length a>, the series
input arid consists of' the siicces ,ivo arccumulator values.

Suppose that the series input io TscanF is R and the output is S. The basic rela-
ionship bet ween the out put a nd the input is that S, -v funet ion('5 . fl J. If lie nit
ar71 1 etispcific(1. it is iised ais art intavle Of the accuulato)r amid the fir-t output

Celeett SO has the valiieS Li t Iict . t RI. 'Fvpillv. but not niecessariy. int is
chosen so that it Is a left i den lit V of function. If that is the case, then So Ro. It is

S iunilort ant to remiember that the eleilient s of itemns are uised as, the second arvlinient of
fuction. 1The order of' argilnment 1,; ishosen to high Ii ght t his fact.

(Ts canF 0 4 )+ [i1 2 3] ) --- El 3 6]
(TscanF 10 #'+ [1 2 3] ) - - [11 13 16)
(TscanF nil #'cons [a b] ) 1-; [(nil . a) ((il . a) . b)]
(TscanF nil #'(lambda (state x) (cons x state)) [a bI) =-, U(a) (b a)]

If lie Hill arguliiti IS not Ipcified. then the first clemient of time output is, coiiiputedl
diffeVrent K fruin tht lie ucceediiug elteints and 5 0 ft0 . (If function is, cheap to evaluate.

TscanF rurt- r're etflilurlvIt it I., pr,ided with ant Mit arguminent.) One, 1iiat ion %%here
5. oili Iv pi'iillv hma, to leave out 1 i' iiiit argumient is when Iiiitiioi does iuot hiave a left

id''rmltitv elemlent as In th, la~t ex;1111ple below.

Aa



14 Rot,'rtu~ i i

iTscanF V+ [1 2 3]) =>~ [1 3 6]
(TscanF #'max [1 3 2] ) z:: [1 3 31

A it I it erestling examliple of a sca 1nI ng proct,,s I > :i-pt ra W iii 1) 1) 1 orI Itil1. In hi>1

process, a total is divided ilp arid allo(cated bet worn t~ I,, liIc it'o ci Oi-_,rir'.. Flitili

tlion is (lone based on percentage,, which are assocratri A I 1 it hIitge hr( Oxarrjil.

'011Cc roimirhber of packages, ighit be ivided itp let wel. I iiiiiii,01 (It peCOpl. I )rOTIiil

think thcat t ill. could Ile (bile st ranhit forward l ti !)% r i t- hrtota ht, o ach 4~ tilt

peri'ent ages. ['nfort unateIN.. til hjs mappin- approacl, lo> lit 'Alirk.
Ihel, proration problemi is iiort coitilex thani it dtycers,. liallk there, i>

hlmit to the cliisibility of thle total l e-'... whe a iit Id pickats1 d11iied 11p. thle

individual packages caflnict be Iudvie) 1 ~src~That rwlirin-i tiiiuit be perforrlied

each t inie the total is in tilt iplied by at percenta-e. IIn adiji ill.I it iusu~lally irliport ant

that the total be allocated exactly I.e., that rtco suil id tkfalia I' be w'acily eqlil

to thle total. rather than being one miore or oneit 1,s-. nnling 1- itiired lit iriler to

inake >rire that thingts comie out exact lv righit

A, at concrete examiple of prorT~ion. sluppose h1at l potkages, need t ; b4, alliucated
aniotig three people lbasedl on the lper((naite > 37", 1) :. aind 20 ) . \ssucrizg- -hat tilie

percentagres arid thle nuiber Of p~ackages are all repir.', rcied ;- iiritner, .sirple iiiappinitf

wvouild lead to the 'incorrect result below lin which the iall,, atidf o1l u to 1009 linstead
of 99.

(prognS (round UI (* 99 [35 45 20] ) 100)) - [35 45 20]

The t ralisducer Tprorate below solveh the p~rorat~in problein bY ti.sing TscanF. It takes,

lit a total and an oss series of percentages and retnrn, (in ( ),i >cries of allocations. 'I'l(

basic act ion iof the progratin is to ci tilt iply each ji prcenit a,_, L1 c thle tt aid. II owever. it

also keeps track of hlow mutch of the total has been allocit ed. W lien the last percent atg

i encountered, the allocation is set to be everyt lin %v a hI reiar ri. to lbe allocated.

(This can cause a significant (is tortioni in the final all ocat i on. burt it _1rina rant ev, that the
al locat ion, will always add tip to the total no ni at ter w ihas ha ppene wic iorn(i

alongo thle way. ) In ordler to determine when the last perceriitage 1 is eHi g en CoI ilit ered . the(

irig,_ra In keeps track of how in uch percent age Iias been ic-iintel fo r and athrisI iat

ito, percent ages always add up) to I 0t.

4 (defun prorate-step (state percenct
(let* ((total (second state))

(unallocated (third state))
(unused-percent (fourth state))
(allocation (if (= percent unused-percent) unallocated

(round UI (* total percent) 100)))
(setf (first state) allocation)
(setf (third state) (-unallocated allocation))
(setf (fourth state) (-unused-percernt p-rcent))
state))

(defunS Tprorate (total percents)
(declare (type oss percents))

(car (TscanF (list 0 total total tOO) Uporra.e -stdp percents)')

(Tprorate 99 [35 45 20]) L35 45 19J

p%. Pi'.~M~~ .e % W,. .



An ilitvrt-tlr i pect of' lhe function Tprorate is that the state itianipulated 1)' thec

'CurIrued funiction1 prorate-step lia,, four part,,: an allocation, the total, the uinallocated

purIdi*n o4 the tot;&i. andi the r1enn;itannn p.'rCE'TI~eTaO t v et allocatedl. This, illustrate., the

11ac I I hat Ts canF ca;n be ii sedl wIt It c mII plex stat e o 1) ject s. I hie ;anie is t rue of EnumerateF

and lReduceF. hlowever, It also ill uit rateis that accessiNg the various parts of at coiplex

>u ate v awkward arid Inefficient.

Viirttiiiat, . It Is often po.h ii de to( get arountd the need for a complex state object by

aiizi coniupounil os), expres.sion. lor the example of proration. this can be done as

-. l.'rn below%. S1nniple nuta1pplinig 1, cu-ibined with two scans which keep track of cunulatiVe

\aIte~A Iipl icitlv i ria ppedl tt et is, used to4 make sutre that t hings come out right on

l i laS t step. 1 li e funitc tIin Tpre v ious Is use t o acci, s thIte pre vious valute of' Ih e series

unallocated.)

(defunS Tprorate-multi-state (total percents)
(declare (type oss percents))

(lets* ((allocation (round UI (* percents total) 100))
(unallocated (TscanF total #I- allocation))
(unused-percent (TscanF 100 #'- percents))

(if (zerop unused-percent)
(Tprevious unallocated total)
allocation)))

Cotruncation

A key feature of every on-line transducer is that it terminates as soon as any input

runs out of elemients. Put another way, the output is never longer than the shortest

Iinput. (If the transducer is also an early terminator, then the out put can be shorter than

he shortest input. otherwise it miust be the same length as the shortest input.) This

effect is referred to as cotruncation. because it acts as if each input had been truncated

to the length of the shortest input, If several enumerators and on-line transducers are

combined together into an OSS expression. cotruncation will typically cause all of the

series prodluced by the enumerators to be truncated to the samne length. For example, in

the expression below, all of the series (including the unbounded series produced by Eup)

are truni cat ed to it length of' two.

(Rlist (* (+ (Eup) [4 5]) [1 2 3])) => (4 12)

a Tcotruncate itens &rest niore-i.tcviis => iitial-iternis &rest ruore-initial-iten."

It 1,caso a aI01tli I imiportant to peci fv cot ru ncat ion explicitly. This can be (lone withI
he fint i~i o Tcotruncat e whlo,,v only actinon i to force all of the out puts to be of the

,;anti' nigthI. (if any (if tlie Iniput, of Tcotruncate are such that they can be iused as

le~ina i'i~of alters. t hen the, c~rrespondlingT oult put> of Tcotruncate cartn be weit

fle-j Iii t it) 1  'it alters.)

(Tcotruncate El 2 -3 4 -5] [10] 1~ [1] [10]
(Tcotruncate (Eup) [a b]) ~ [0 1] [a bJ
(Tcotruncate [a b][J []]

*~~~~~~ % --.... * ~ *'- * * % . -~
:*~ F, W~ P.09ree.7S.

%



26 Reference Mlanual

AXn 1inirtart leattre of Tcotruncate is tfiat it iat i l)I\werfil interact ion w it i Ilie'

requi retitent that witiin each on -line siifbexpre.ssio ii. tle rc ii iii.>t be a ilatia flow pat h I miii

each teruiination point to each output. Consider the function weighted- squares -buggy

below. This programn is intended to take a vect or 4f values arid a vector of weights

and return a list of two vectors: the squares of' the Nahi u' a nd the squares inult iphied
bv the weights. The prograin is erroneous. hecau ,v there Is no data flow pattli front

(Evector weight-vector) to (Rvector squares).

(defun weighted-squares-buggy (value-vector weight-vector)
(lets* ((values (Evector value-vector)) ;Signals error 18

(weights (Evector weight-vector))
(squares (* values values))
(weighted-squares (* squares weights))

A (list (Rvector squares) (Rvector weighted-squares)

It ilhlt be the case that the proglrainneiitr kniows ,that value- vector and weight-vector
al ways; have the samec length. (Or it night he the case that lie wvants, both out put valuies
to be no lugrer than the shortest input.) In eit her ca.'e. the function can be writ ten
it, shown b~elow. Trhe key difference isthat the us e of Tcotruncate miakes hothI out-
puts tlependl on 1)0th inputs. If the inputs are known to he the saine length, the use of

Tcotruncate canl be thought of as at declaration.

(defun weighted-squares (value-vector weight-vector)
(lets* ((values weights)

(Tcotruncate (Evector value-vector)

(Evector weight-vector))
(squares (* values values))
(weighted-squares (* squares weights))

(list (Rvector squares) (Rvector weighted-squares))))

(weighted-squares #(1 2 3) #(3 2 W) => (#(1 4 9) #03 8 9))

Off-Line Transducers

Fhis -section and the next two describe transducers thiat are not on-line. Most of the.se

.5hinctioris have somie inputs or outputs, which are on-itie. ['he ports which are on-line

Canl be ulsed freely. However, the off-line ports have to be isolated when they are used.
For ease of reference, the off-line ports all begin rit t iie letter code "0".

I Tremove -dupl icates Qitcems &optional (ctazparator #'eql) z~Iteiri,

JThi- funiction is analogous to remove -duplicates. It creates an t~ series that has, thle
,ai:ie elemients as the off-lint, Input ()itcrnis wit hi all (Iiii~tsretiove'(. The comrparator

u lse~d to determinne whether inr tiot two) iteriis, art, (tiplicaite>. If' two itettis are the samie.
!hct the iti wich 1, later ini thic scries iK dls ardI-. A> iin remove-duplicates thie

'r ld, ,rltlirti v'nplovel Is iet partiliil\ tflie Weitt. it. It'f the' 0iteriis input of
Tremove-duplicates is such that it can ho' iied ats; (it niatl onfor alters. Owlin the

4, %. )111ii it of Tremove-duplicates canl 1W~ used as at dest i IIit I TI to )r al1t e r S.

(Tremove-duplicates [I ? I (a) (a)]' -1 (a) (a)]
(Tremove-duplicates D1 2 1 (a) (a)] #'equal) -4 i2 Ca)]

ze



Off- Line Transducers 7

o Tchunk aniount ()itemrs => lists

This function creates an oss series ui lists of length auwount of stucce.siv,.e.u b.eries of
the off-line input Oiterns. If t I,, Iei 11 ,f ()itmn i' not a rultmlie " a iou ti. thenl the

last (mod (Rlength Oiteiri.) aiinri t) elements of Oit ems will not appear in anv ou tput

chunk.

(Tchunk 2 [a b c d el) [(a b) (c d)]
(Tchunk 6 [a b c d]) - []

e Twindow ainount Qitemis = l':t.,

This function creates an oss -,eries, of lists of length amount of subseries of the off-
line input Oteins starting at each elenent position. If the length of Oiterm. is less than
amount. the output will not contain any windows. The last example below shows Twindow
being used to compute a moving average.

(Twindow 2 [a b c d]) = [(a b) (b c) (c d)]
(Twindow 4 [a b c d]) z [(a b c d)]
(Twindow 6 [a b c d]) []
(prognS (U (apply #'+ (Twindow 2 [2 4 6 8])) 2)) => [3 5 7]

o Tconcatenate Oitenisl Oitenis2 &rest more-Oitemns => items

This function creates an oss series by concatenating together two or more off-line
input oss series. The length of the output is the suni of the lengths of the inputs. (The
elements of the individual input series are not computed until they need to be.)

(Tconcatenate [b c] 0 [d]) z [b c dj

(Tconcatenate [] D) z []

o TconcatenateF Enumerator Qitews => items
The Enumerator must be a quoted oss function that is an enumerator. The function

TconcatenateF applies Enumerator to each element of the off-hne input Oiterns and

returns the series obtained by concatenating all of the results together. If Enumerator
returns multiple values, then TconcatenateF will as well.

(TconcatenateF #'Elist [(a b) () (c d)]) => [a b c d]
(TconcatenateF #'Elist [() 0]) =:: [0
(TconcatenateF #'Eplist [(a 1) (b 2 c 3)]) => [a b c] [1 2 3]

o Tsubseries Oiterns start toptional below --:, items

This function creates an 0SS series containing a subseries of the elements of the off-
line input ()itcrw, froii tIart up lo, but not including, below. If below is greater than the
le-- ,1t of Viteiii.,. out prit neverthlel,'s, 0ops as soon as the input runs out of elements. If
bel(l ( is not sp,.,ifiel he outpti cotinuiie.- all the way to the end of Oitenis. Both of
the argunient, start and below niiist he non-negative integers.

(Tsubseries [a b c d] 1) => [b c d]
(Tsubseries [a b c d] 1 3) => [b c]
(Rlist (Tsubseries (Elist list) 1 2)) - (subseq list 1 2)

0

|.%

9I t



28 Reference anuial

It' the )itenis input of Tsubseries is such that it can be use( i as a (lestinatiot for
alterS. then the output of Tsubseries can be used as a destination for alterS.

(let ((list '(a b c d e)))
(alterS (Tsubseries (Elist list) 1 3) (Eup))
list) =: (a 0 1 d e)

Ithe hiuction Tsubseries terinitates a,,s soon as it has writteii the last out put eleunient

A- a result, it is an early terminator. Ibis call soincillies lead to conflicts with the

rstriction that within each on-line sube'xprvssi on. ther, liu>t le ie data ti(%" patl front
each teruiination point to each output. p To elect a ul erie, wit ho t 1 sill ian early
terminator, use Tselect. Tmask. and Eup as shown below.

(Tsubseries Oitems from below)
- (Tselect (Tmask (Eup from :below below)) Oitems)

* Tpositions Obools => indices

This function takes in an oss series and returns an o(ss eries of the indexes of tlhe
-' non-null elements in the off-line input series.

(Tpositions [T nil T 44]) =' [0 2 3]
(Tpositions [nil nil nil]) =' []

- Tmask ()ronotonic-indices = bools

Tli> function is a quasi-inverse of Tpositions. The input Ononotonic-indices must

be a strictlv increasing oss series of non-negative integers. The output, whiih is al-

way- , unbounded. contains T in the positions specified by O(nonotonic-iidices and nil
everY where else.

(Tmask [0 2 3]) = [T nil T T nil nil
(Tmask []) - [nil nil ...]
(Tmask (Tpositions x)) = (Tconcatenate (not (null x)) (Eoss :R nil))

,-Tmerge Oiteiisl Oiteins2 comparator =:> items

II ti fun'tion is analogous to merge. [he (ilt pitt series contains the elenitents of the

"' wo ,,ff ine, in put series. The eleitients of ()te usl appear in the sail e order that they

ar, read it. Si nilarly. the elements of Oitems2 app,-;ir in the ame order that they are-
read iM. Ilowever the elements front the two iniput are interinixed under the control of
,he !,niparator. A\t each step. the coitiparator is used to (Olilpare the current elelien ts

lit the two series. If the coutparat,,r returns non- n ll. tite- clirrellt elemient i, riloxed
froni ¢)jltt ,l arnd transferred to the output. Othvrwise. tilic next output VolIes 'fron

Oitens2. iIf. as in the first exanple below. the eleniewui, of the individual input series
are i,rdered with rspect to comparator. then the re-ult %k, ill arl'd be , ered with respect

' )tf),, .,, I1 tra tr. I. as, i rt I ,II econl , .varo I l F.v w .I I ()c f I I tr ii I , 11 i ,ri t ,'r,',l. lh, re e ult

' III i" a -)t l' ordered.

I (Tmerge [1 3 7 9] [4 S 83 v'< [1 3 4 S 7 8 91
(Tmerge [1 7 3 9] [4 S 81 <) [1 4 5 7 3 8 91
(Tmerge x y #'(lambda (x y) r,) (Tconcatenate x y)

%'

!0.

.", ,,-," -. , % .5 - 5 P. .'.' ... ' .5 %



Selectionl andi vt..filIM

*Tlastp ( itern, Z=' h(o)J' jtt'iii

T his funct ion takes li a >erive, andi retiiu ni av-rite, of boolean \al ues ha vini g thle >anie
**length - uch that the la-t x eill 1 T ;md il l )t t I Ii. (0 her x 

4
1,t- ir,, nil. If I i npuIIJIt series

I'111 urib .unild. theni the wit put -'rie will ai,( h( ti;- iiid and everyN el-rtiew (itf thle
out pit will he nil.

It turns out that tli> wlitlit ( aliltot be compJiiteo b%~ all oli-Ibrie wss fulcikuII. Ihiere-

fore. if Tlastp returned 0111% the fIldeall valuecs (le~cribed~ abiove. the Isolation etidon
would miake it inilpossihle to use t, *ieilllIt >eries and thle output values togt Ther In) Ohe

s1alle oouii1putation. lit order to 2.etmnd I hi- prllenii. Tlastp ret urns, at econid wut

puit which i-, ident ical to the ilillt Tll, O't putI ('ai lbe lIs1(Il hel lieu I " itnput III

COn jibi naitoni wilt I hle 1)0 lea i l ie

(Tlastp [a b c d] ) =:$ [nil nil nil TI [a b c d]
(Tlastp [a] ) =4 CI] Cal
(Tlastp [I) > [I [I
(Tlastp (Eup)) ~ [nil nil nil.. [0 12 .1.

As an examtiple of using Tlastp. it is- inlt cet in t o ret urn to t he exampli e (, prni'ra ton)

discussed li conj~unct ion wil fthle ftinit ilon TscanF. B~oth oif the proration fintctin*-r
W ~~~senitedl earlier as il hat thelit riag always, add il o10 ftl, lrl i 1o

to be the case. then anl exact allocation of the total i> nrot gtiaratileed. I It., 1uilotviiig-

*.progratti ensures t hat exact alloat ion will occur Till Itat ter what Ite percentages' add upl
to. It dtoes this by using Tlastp to d ltect w ilic h percent age is tilie I ast o tie

(defunS Tprorate-robust (total Opercents)
(declare (type ass Opercents))

(letS* ((is-last percents) (Tlas-tp Opercents))
(allocation (round (/ (* percents total) 100))

S (unallocated (TscanP total #'- allocation)))
(if is-last (Tprevious unallocated total) allocation)))

(Tprorate-robust 99 [35 45 20] ) => [35 45 19]
(Tprorate-robust 39 [35 45 21]) ---- [35 45 19]
(Tprorate 99 [35 45 21])-4 [35 45 21]

Selection and Expansion

Selection andl its iver~e are, llarticiilarly Imnportant kinitis of off-line tranlslicers.

e Tselect hmof &optional item. -' ()iteiii

[h is function select., elemient- frotti a hne ased on a li(ileali Ieis lie, o~ff-hle

f)lit P it consists o)f tlie, elelneIllI it e1i.1w ,01c '-lImrrespi to tm ion wiill elenti of hoobs.
I Iat i-. to saV,. t( lie ,tb 1) e eit'lIT 1. II Itu I l In lie- wit putt if th I it 1 eletnielt of Imoof is

nontul. Hm' rle#r )I t iie t'lein' i- iremn I litml ' iii Is lie -rdcir of1 t1 lie eletieit
I I i t0-I I I. I lit wit puit I erniiuatc a m )t i a> 11Iter I iitI)iItI rtni> i t o element,11v s.I I f I I

% Ir I I Ijteuli Inpu IIt I5 wpcifief I. It,1 un itli ti I ul e IIen t of 1ool 1,bire t fItei sel %v ret uied w as
flie- output J Tselect. If' Ilir !lcii, Input 4f Tselect is such t hiat it can fbe us ed a."

a dvt4htIimi l'or alterS. ltivi k, m 1put )I Tselect -ani lie usewd it, at dftttIn for

*alterS.'

.: , .~ . -* . -. . . . ..-.. ". *... . % .N

P- M. .. 'L P



p p p p p p-p - - - - - - - - - - - - ---- rj : - r, , , , r ,', rl . . r - <r .. r-, r .-: . . -. ~ -.r, , -o

30 Rleferen e \la nual

(Tselect [T nil T nil] [a b c d]) rz [a ci
(Tselect [a nil b nil] ) => [a b]
(Tselect [nil nil] [a b]) - []

An interesting aspect of Tselect is that the out put serie, is off-line rat her t hall having
the two input series be off-line. This is done it recognition of the fact that the two ilnput

.-eries are always in synchrony with each other. Having only one port which is off- line

allows more flexibility then having two ports which are off line.
()ne might want to select elener, ts out of a >eries based )n their pos!iions in the series

rat her that ont boolean values. This can be done straightforwardi!v us ing Tmask as s hw

I)b ,lo\%

(Tsolect (Tmask [0 2] ) [a b c d]) --' [a c]
(Tselect (not (Tmask [0 2])) (Eup 10)) - [i1 13 14 15

A fiinal fe, 1ire of Tselect in particular, and off-li e ports in general. is illustrated bY

the prograni below. In this program. the Tselect causes the first Elist to get out of
phase with the -econd Elist. .As a result, it is iunportant to think of ()s. expressions as;

H'p-i n, i~around series object, rather than as inerely being abbreviations for loops wlhie
% things are always happening in lock step. The latter point of view m igh t lead to the idea

hat the ,utput of the program below would be ((a 1) (c 2) (d 4)).

0?j (letS (( tag (Elist '(a b c d e)))
(x (Elist '(1 -2 2 4 -5))))

(Rlist (list tag (Tselect (plusp x) x)))) => ((a 1) (b 2) (c 4))

e TselectF pred Oitrm.us z: ,terzis

[his function i the saite as Tselect. except that it maps the non-OSS function pred
% e flr ()ite,. o obtain a series of Ib olean values with which to control the selection. In
% alition. TselectF has an off-line input rather than ani off-line output (this is fractionally
<-i ,,ore etlicient i. The logical relationship between Tselect and TselectF is shown in tle

1al example below.

(TselectF #'identity [a nil nil b nil]) - [a b]
e (TselectF S'plusp [-1 2 -3 4]) E' [2 4]

(TselectF prod items)

-7 (letS ((var items)) (Tselect (TmapF prod var) var))

e e Texpand bf,,,- Oiterns &optional (detbult nil) 4' itemlis

I'}l- fun tin , a qua..i inverse of Tseloct. (The name is borrowed from AP..) Ih(
e %Uii 1;)It ,ontajits the elenient., of ()te'rns spread out into the position, specified bY the

S%" rl IIil! " rze1tt ill hod, i.e.. the Ith elellielt of (oitei,, is in the position occupied

, the 110 TIOI inll element in hoot,. [ lhe other positon> in the output are occupied b%-
• .i,, . I t, wutput .1,)p a ( soon , t ools run> (,lit of elem'ents. or a non-null element
a I )I. 1- ,.nc imntereed for which ther, i. no, correspo ldi l, lelerr nt in ()itenis.

" (Texpand [nil T nil T Ti [a b cl) 4 [nil a nil b ci

(Texpand [nil T nil T T1 [aj) [ |nil a nil]
"*? (Texpand [nil Ti [a b ci 'z) - [z a]

(Texpand [nil T nil T Ti []) :> [nil]

[•

.Or

. ,,% ,,//-,'/,0 ,.0 e, 'P ". e :.....'/ e, ,,." ', . .". '.,.o i.~ ' ; -" "iO,.,;v'-'5



Spliting31

Splitting
%7 . A-Xr operation which 1 clo-.elv rcli-d to seleItctiorl 1-, splitting. III selectioli. specified

oleinen t s which are no t selct e . because theY have been discarded. II coilt rast pitt tinrg
divides up a series ino t wo or niore parts which. can be indli vj(idally used. lBothI Tsplit
and TspliJtF hiave on-line inipuzts and off-line output,-. The output, hawe to be off-IlineC.
because t hev are inherently non - vncb r onzed with Iiach other.

.Tsplit itenis hoofs &rest iniore-boobs =: Qitvems I Oiterins2 &rest inort-Olteliis

_1WThis function takes in a serie, of elenienii a1(1 partitions t bern bet wren t wo or iriore
outp~uits. If there are n ho00leant I inlputs t ihen thlere are ii - I (pillitluts. E"ach I nput vleient

% is placed in exactly one out put series. Su p po!se that tilie 11t h eleirien t of hools,1. inon-iinul.
In this case. 1 e nth element of ltern' will be placedl in Oli mis 1. On t he other hand. if
the nth elemient of bools is nil. t lie sec n (1 booleani i Itf any )Is consulted In order to

see whet her the input element should be placedl in th lcSecond wit put or in a Ilter out put.
w, A, ' in it cond. each t ime a boolean eleiiient ni nil. th lnext hon lea ii series" in -onl tilt ed.

if the n th eilment of every hooleali serwes Its nil, theni thle n th i neftient (f lt tin. 1, pl aced

in the last output.

(Tsplit [-1 -2 3 4) [T T nil nil])r~ [-1 -2) D3 4)
(Tsplit [-1 -2 3 4) [T T nil nil) [nil T nil TI' "z -1 -21 [1 [1
(Tsplit [-1 -2 3 4) [TT T T) ) > [L1 -23 4) [1

If the itemus input of Tsplit is such that it can be uisedl as a destination for alterS.
* then all of thle output. of Tsplit c-i 1 he used as destinations for alterS.

(letS* ((ist '(-1 2 -3))
(x (Elist list))
((x+ x-) (Tsplit x (plusp x)

(alterS x+ (+ x+ 10))
(alterS x- (- x- 10))
list) =: (-11 12 -13)

*TsplitF it emr pred &rest rijort-tnrenl : Oitenis I Oiterzis2 &rest mnore- Oiternis

This funct ion is, thle sanme as Tspiit . except that It takes predicates as, arguiient
rathert anhlea srie.1 -it, ertd icat es nist he non -OSS funcutions arid are a )plie(l to

temns in order to create boolean values - I he relationship bet ween TsplitF and Tsplit is

almoust biut riot oxactly as shown below.

(TsplitF items predi pred2)
4 (letS (('tar items))

(Tsplit var (TmapF prodi 'tar) (TmapF pred2 var))

~.V
I'll r tsnhat t1I1v eqliideli,lc I above dos iiot quite hold is, that, as iii a cond. the

fpredlicties ire nii appliedI ton Md mnluial elt-nitenits of it-nus unless the resuilting value Is
it-l'lIII order to d'terviniiu which oiiiprit series thle eleIiient lionild he pla-ed in e.

ithe irt pr,,flt et ret urnts !,Ti ill~ %hen ive the 11th eleliinu of itmthe seconid

____prilia ttv wdi not be colii ' I hli, proitiotes ethumericy arid allows earlier predlicatves to
Sact as, giiarfl, for latcr prediC;At-MS %0

zem

WO.

% ~



32 Reference Mlanual

(TsplitF [-1 -2 3 4] #'minusp) : [-1 -2] [3 4]
(TsplitF [-1 -2 3 4] #'minusp #'evenp) :-; [-1 -2] [4] [3]

Reducers

Reducers produce non-OSS outputs based on oss inputs. There are two basic kind>

of reducers: ones that combine the elements of 0%S series together into aggaregate data
struct ures (e.g., into a list) and ones that compute some summary value fromi these
elements e.g., the sumn). All the predefined reducers are on-line, A few redlucers are aIM)

early terminators. These reducers are described in the next section.

" Rlist itemns =:> list

This function creates a list of the elements in items in order.

(Rlist [a b c] ) 4 (a b c)

(Rlist (fn (Elist x) (Elist y)))- (mapcar #'fn x y)
(Rist (fn (Esublists x) (Esublists y)))_ (maplist #'fn x y)

" Rbag I .tei- => list
I hii> fiict ion creates a list of the elements in itein> with no guYiarantees as to the order

,)f the elemjents. The function Rbag is more efficient than Rlist.

(Rbag [a b cJ) = (c a b) ;in some order
(Rbag [I) =: ()

" Rappend lists => list

This function creates a list by appending the elemuent., of lists together in order.

(Rappend [(a b) nil (c d)]) =:: (a b c d)
(Rappend []) :>- 0)

" Rnconc lists -- list

This function creates a list by nconcing the elements of lists together in order. The
function Rnconc is faster than Rappend. but modifies the lists in the OSS series lists.

(Rnconc [(a b) nil (c d)] =:> (a b c d)
(Rnconc []) => C)
(let ((x '(a W)) (Rnconc CEoss x x)) =:> (a ba b a b
(Rnconc (fn (Elist x) (Elist y)))- (mapcan #'fn x y)
(Rnconc (fn (Esublists x) CEsublists y)) E (mapcon #'fn x y)

" Ral.Lst kev, vahwes => alist

I If'II tiwn creates an alist containing kevs arid valujes. It termninates a,, sooni as
* ,t? 'r d' the iriplits run>, out of eleinents,. fthere are- duplicate keys, t hey will he put oii

the '1,- hut order is preserved.

9 -3-.

%



Reducers 3

(Ralist [a b] l 2) ((a 1) (b .2))
(Ralist [a b] D) ()

" *A" "(Ralist keys values) (Rlist (cons keys values)

* Rplist indicators values => plisr

This function creates a plist containing, keYs and values. It terininat,- a, soo(,n as
either of the inputs runs out of elements. If there are duplicate indi al r-. theY will be

put on the plist. but order is preserve(d.

(Rplist [a b a] [1 2 3]) = (a 1 b 2 a 3)
(Rplist [a b] []) =' ()
(Rplist keys values) _ (Rnconc (list keys values))

* Rhash keys values &rest option-pliSt =,' table

This function creates a hash t able containing keys and values. It terminates as soon
as either of the inputs runs out of elements. The option-plist can contain any opt ion,
acceptable to make-hash-table. The option-plist cannot refer to variables bound by letS.

(Rhash [color name] [brown fred]) :> #<hash-table 23764432>
;;hash table containing color->brown, name->fred

*(Rhash [cclor name] []) = #<hash-table 23764464>
;;empty hash table

' Rvector items fkey :size &rest option-plist : vector

This function creates a vector containing the elements of items in order. t he option-
0- plist can contain any options acceptable to make-array. The option-plist cannot refer to

variables bound by letS.

The function Rvector operates in one of two ways. If the :size argument is supplied.
then Rvector assumes that items will contain exactly :size elements. A vector is created
of length :size with the options specified in option-plist and the elements of items are
stored in it. (If items has fewer than :size elements, some of the slots in the vector will
be left in their initial state. If items has more than :size elements, an error will ensue.)

_ In this mode. Rvector is very efficient. but rather inflexible.
(Rvector [1 2 3] :size 3) = #(i 2 3)

(Rvector [#\B #\A #\RJ :size 3 :element-type 'string-char) ' "BAR"
O (Rvector [I] :size 4 :initial-element 0) =* #(0 0 0)

If the :size argument 1s not supplied. then Rvector allowsfrth raio faIfth siearuen s o spli', hn vctralos for the creation of an

arbitrarily large vector. It doe, iis y using vector-push-extend. In order for this to

work. it forces :adjustable to be T id :fill-pointer to be 0 no matter what is specified
in the options-list. In this ino(le. al arbitrary inliber of input elements can be handled.
however. thinl.,s art, much l,.1s ,'tliCiit . snince the vector created is', rot a situpile vector.

(Rvector [1 2 3]) #1 2 3)
(Rvector ]) =' #()
(Rvector [#\B #\A #\R] :element-type 'string-char) => "BAR"

Io tore a series in a preexisting vector, use alterS of Evector.

L 2



34 Reference MXanual

(let ((v *(a b c))
(alterS (Evector v) (Eass 1 2))
v) z=' #(1 2 c)

e Rf ile niame itemri krest optionl-plist =:, T

T'his function creates a file named naine and write., he elenin I of it eriw into it
using print. The option-plist can contain any of the opt iou s accepted by open except
direction which is forced to be :output. All of the ordiiiarv printer control variales

itre ohb'eild during the print out. The value T Is al ways retuiirnedl I' e ' n-phrCMII u O

refer to variables bound by letS.

(Rfile "test.lisp' [P(a) '(1 2) T] :if-exists :append) '~T

;;The output

;;(1 2)
;T"is printed into the file 'test.lisp".

* Riast Iterns &optional (default nil) =: Item

This funct ion returns the last element of 'temis. If te> of' zero length. defa ult is
ret urrned.

(Rlast [a b c]) c
0 (Rlast [D 'z) => z

*Rlength itemns => number

This function returns the number of elemtents in Itvrmi!.

(Rlength [a b c]):l 3
(Rlength 0) =: 0

* Rsum jiumbers => number
I hi> function computes the sun of the elemntts IIIII h numbe. Chs elementsImust

be numtbers. but they need not be integers.

(Rsum Cl12 3)) => 6
(Rsum [I) = 0
(Rsum [1.1 1.2 1.3]) --#-. 3.6

* Max wir t iher-> :; n umber

I11 hI> liction coliites the maxiiurrii of the elemients In uiumher>. I hese ceti-m-ut
P iwiist ov rior-coitiplex wnmbers. but they need not be integers, the valuec nil i> ret urned

if miuin her, ia, lengthI zero.

(Rmax [2 14 3])= c4
(Rmax []) => nil
(Rmrax [1.2 1.1 1.4 1.3]) => 1.4

0 Rmiln wiadwf,~rs n'riumber

III, ftiiict"1 (n'inilmnites the ininlitiiini of t he cleiiivwri II wi umIJbe,. 'I Iiec elceit1
ill't be' TIOn-complex numbers. but they need not be integer>, Hie vallic nil > retturuied

i iijudw,r has length zero.

0%
11_



* (Rrin [2 1 4 31 7:2' 1
(Rmin Hl 2 nil

0ReduceF itit titiui te tc', rce,?lt

Yhlbi'unctidon is- analogeeus to reduce. InI ;iddit jeen. it js, iriiiar ill TscanF rxee'pi that

I .l H I 1101 Ho t O lid iti(1 till' fiflIl XiliiC' -4 Ow l ie'lel~iilIdtor i, the (Ill.% value' ret liriwd (l

shown'l III the last exaiple blo'Io. It Jc'ii i of, IvI'lt zet~r). irizt i>, ret urnied. Awit

Tsca.nF. (ictitn 11111-t lie it non ()" 1i11 fnit 'P and t he valuet of iti t-v-Npicrdllv ehe'.Ij tI

beC a lef't Idlt'itit~v 4f tiictioii. It I- I1iIC~ftitrit to) rv'ii-itilb' that the celwiien Ie ter aroe

4, ir~e'l as, t he se'onid art-nineli (4l (uii i u. I lie rie-r It* arguiientw el cIee-. iii.lliJ

this fact.

(ReduceF 0 # + [1 2 31)-> 6
( ReduceF 0 #'+ H ) 2Zt' 0
(ReduceF 0 #'+ x) =- (Rsum x)
(ReduceF init function items)

(letS ((var mnit))/
SW. (Rast (TscanF var function items) var))

In ordler to dot reol oct ron withbout anl in it ial seedl va ie. 1.,(- Riast f Ts canF . N(O itht at

althoughi t seed valuie (loes itli have te) be ,pecifiedl. at value to he, re;ure, I! liert ure

no elvierit s in itemsi still has tC he pwci tied.

* (Riast (TscanF #'max x) nil) 5_- (Rmax x)

0 Early Reducers

I ht(' follo winrg four revl icer>, a re earl.% t eini natCr, . Each of these foucto iosha, it non -

early' variant denoted by the suffix "--late" . The early variants are inore efficient . because

they' termiinate as soon as they have deternlined a result. Trhis niay be long before any

of the input series run out of elemients. However, as discussed at the end of tisl section.

one hats to be somiewhat careful when uising: an earls' reducer in an OSS expression.

* Rf irst itemis &optional ((lefitrlt nil) =- iterul

a Rf irst-late itemns &optional (etltufr nil) =: itemn

B~ot h of these funct ion.s ret iin thle fi rst e'leinent of it ems. If itemns is, of zero letngt h.

d eefarult is returned. The only differenc'e bet ween thle functions is t hat Rf irst stops Ii-

rued iat elY a fter reading the first e'lerne'i of it emns while Rf irst -late (foes not termini rate

until itemns runs out of eleitne'11it

(Rf irst [a b ci) a
tB(Rf irst [H 'z) z

e Rnth-nltet ii &optional ele iolt nil) 't

1* 
Rnth -l t ni O i 'ri &optional (le i a lt nil) 

' it ii

lB'tI o tl'e f ri rhifon> I-0 1t l tle nith Ii lettient of Ite'ms,. If ri is greater than eel' equ tal

I,, th Iri-,li III lten,i . dfe'lttilt 1 e' i tIiriivde. 11I rly (it- 'feretice between tile' tuncticri

- i~1 thl;tt Rnith Oteps, iriitiiediatv1\ tflr rriidriirig the nth cielenient of' item',s while' Rnth-late

(l( ' 11-0 etoerrri! nate unit il it ii ll 1-l1 ('111 Ief vileniietr

.

.f . ? .~ S%



% Rnth 1 [a b ci) b
(Rnth I [I 'z) "~z

a Rand hoI. >. ho

e Rad-late Itoob' :I: b)(o

Both of the ,e hin jots nputt lit- and ofthle elt-iiieri1 f OoolK \ witi I he fI111(1 I ol

and. flil i ret urn''1 if any elciiierit of hools I., nil. ( ); Iwrwi~v '1 lit szt clulectit o hool.

-~~ '-t rt''iI Flic' %aluie T I., rtuirnied ]I bImol lia I1e11 /ero. lit -,:I% liftler'i-t- Iho't wtti

lie, 1,:~i~ that Rand teriiiiniattes ;is ,ooii tI ;I nil i , enctitterc(i i lit iiIput . whie

Rand-late dlue niot t er IIIitiat e 1 ii bIIho 1/s run ou t t f l tetineTitI

(Rand [a b ci ) => c
-(Rand [a nil ci ) => nil

(Rand N ) L: T
(Rand (pred (Esequence x) (Esequence y))) ' every ;'pred x y)

0 Ror it-ils =-> boll

e Ror- late boo, =>' boo)

Both Ii thle~e funict ions coiput e the or of thle eleiii''i tt litib hooj .. A with it, e l iC t i

or. nil 1, 70t urnied if every elemient of boo/s is nil. Ot htrwise the first nion -null elvuient of
1returnemd. The value nil is retuiirned if' boobs hias lengi I zero. 11i e toflv l% (Ii:reui ce

%e w it-e functions is that Ror tetrtiiiiat es as soon1 as a nion- nutll valuie is. encoutter( d

:Ithe liriput . while Ror- late dotes riot termiinate unitil boo/s runi out of elemients.

(Ror [a b ci)l a
(Ror [a nil ci) a
(Ror f] z'nil

Ror (prod (Esequence x) (Esequence y))) H(some #'pred x y)

Care niust be taken when using early reducers. .Ydicnse in tile sectionl
c et ri ction-. ()SS exipre,)sionis are- required to obeY the restrict ion t hat wvit hin each onl-

iii iiiex p res ~ion . there mnust be a dat a flow path front each I eriniination point tou each

Llpw arnv reducers i nteract with this restriction since earkl redui cer5 are e riniinat iOu

)(tit" A,- a riilt . there must be a data. flow path froml eachl caan red utuer to eilc h

wit p 4f t he containing on-line subexpresstCn11

Sirnct reducer,; comipute nri-OSS v-alue,. they direct lv ciiiipitt out1plt, d, oni-line
-uittX~f''.i~ni As\ a resullt . it Is. iiiipo-,sihil for tliert' to lbe da(Itta flotw pal h froi i

- ~reduicer oariy output other than thle output the redlice-r t oi otpie I ltrefore. I!

- :tilt possible to ulse an earlY reducer unless, t half rtalunctr -Ii putt t he o)t Ilv tit put t.1
t he oi-liie subexpressiOn.

F-or t'XanIIple. considler thne fl1lowlntg fourI t'xpres-i-' I lit hr-' I xr'~ii.r' r

t iatuie -esult . H~owever, the first I inre eflicitut. ft, 1, 1 pr(,ou v nal ft'iIi 1t of

It 11t,0 toli 1nere It Is, bet ter tot iie ;lit early red(ucetr. In it F astl. tho 1&0 t \k, t'Xlrt'-iotl-

* ilt~I o rot ptrodunce the samie result-. I lit' niext toI !ast o'rtutt stroittn ht Ov I it'rt

%- [10 data flow path frount instnc of Rfirst to li (ti indl wpit.I

to oltpt s tt. a non-e~arly retluncer tiiki't ht I'Ct1 I, lit 11,' I,1- OoiIl



Z (lets ((x (Elist '(1 2 -3 4 5 -6 -7 8))))
(Rf -irst (TselectF # 'minusP x)))~ -3

~ y.(lets ((x (Elist '(1 2 -3 4 5 6 7 8)))
(Rfirst-late (TselectF #'mninusp x))) -,- -3

(lets ((x (Elist '(1 2 -3 4 5 -6 -7 8)))) ;Signials error 18
(valS (Rfirst (TselectF #'minusp x))

(Rsum x)))

(lets ((x (Elist '(1 2 -3 4 5 -6 -7 8))))
(valS (Rfirst-late (TselectF #'minusp x))

N (Rsum. x))) z'-3 4

Series Variables

1The Prinucipal way to create oss variab~le., is to( use thle forii lets. I These va ni es
are also createdl by the fornis lambdas and defunS.)

a lets var-value-pair-list {dec!}* &body expr-J1st --: result

The formi lets is syntactically. analogous to let. Just as in a let. the( fi rst siO )ftrn
is at list of' varia ble- va lue pairs. 'It, lets formi defines the scope of these;, varilalles and

gilves, themi the indicated valuev..-\ A n a let, one or miore declarations can follow t he

variable-value pairs. These canf be iised to sp~ecify tilie t vpes of' the varia bles.

The variables created by lets c-an be oss variables or tion-OSS variables. Which are

which is determnined by the IN .vpe of the value that is bound to the variable. A.s Ini let.
*t lie variables are bound in parallel. In thle examiple below. y is- an OSS variab~le while x

andl z are non-OSS variables.

(lets ((x '(1 2 3))
(y (Elist '(1 2 3)))

*(z (Rsum (Elist '(1 2 3)))))
(list x (Rmax y) z)) =:t ((1 2 3) 3 6)

Unrlike let, lets dtoes niot support degenerate variable- value pairs which consist solely

of a variable. ( Since lets variables cannot be assigned to. see below. dlegernerat e pairs

w.olid be of little v-alue.

* (lets (X) ... ) ;Signals error 9

T he follo winrg exanniple Iittv, e th li se of a (I ecla rat ion lin a lets. D)eclarat ions are

hiandled lin the aine wythat thclay;are hiari(lled l it let.

(lets ((x (Elist '(1 21 3))))
(declare (type integer x))

I.%(-tsum x))-; 6

t10 jul'11 lets gt thevonii let to) Iinclude thle fuu(-t ionalitv of multiple- value-bind.
A varible lil at vN-iajli1le value pair -anj be it list of vatriables instead of a single variable.

\Wielni lli- is the casev. thle vatriales, pick uip ie( first. secoiid. etc. resuilts ret untied by the
%. v ale x)rcessloii. If there is, onilN )ine varlible, it get. fte first value. If' till is uised InI

11 IVk.N11-?%



lieu of a variab~le. tHie corresporingtt vle itnwrei1 It I herc irc :e%%rvrahe bi

values, the extra values are ii"TiOreil. I - ilike multiple- value-bind. lets 11-'llak all err- i'

there are miore, variables than valuces. i Note that There i jtornit multiple-vahue-bindS

and that the foriri multiple -value -bind 4-annuil be ii>'d totl ti !! 1)55exrsi

bind the results of an OSS funct iol.1

(lets ((key value) (Ealist '((a .1) (b .2, ))))'

(Rlist (list key value)) =:> ((a 1) (b 21)

(lets ((key (Ealist '((a .1) (b 2)))))

(Rlist key) ) :! (a b)

(lets ((nil value) (Ealist '((a 1) (b -2

(Rlist value)) ~ 12)

(lets ((key value x) (Ealist '((a .1) (b. )))
(Rlist (list key value x)) ;Signals error 8

Fihe Cx pr-list of a lets hlas the effect (ot orwiIpra!2 e, ra (I)sepes>tgthr

'Ihe valive of the last formn in the cxpr-h'ist Ps ret uited 1,c ie\ille of the lets. 'I i, valtie

inay be anl 055 value or a nori-oss vtluie.

InI adldition to placing all of tile expressIins inl the -aiie lets binding cope. the
~rou~ifl itupose bythe exprI--st cas>the ent ire kmu!% h hecorite an 05epeso

This can alter the waty imiplicit miapping is appliedl b1% !ii hiliug uion-ONS flinet oti, III the
055 expression.

The restricted nature of OSS variables. I Fiwre are I nuiiniher (of wa% II inwhichF

he variables boul by lets ( or lambdas an I defunS i are iore, re-strnc? ed than hei one'-

houndl by let. For the Itiost part. These restriction, oe'iii fruit the fact that when thet uos
uiacr) jiack;i_,t t ranstorrisi anl WO, expression itit imq l). it rea rrauue the expreo-,iOTt,

extensi vet . 'I Ftis forces, lets va nia le scopes, to he supporin ed variable renauing rat her

,hanl bridi. One result oif this, 1 that ii ot pui-'lile to declare (or proclaim) at

lets variable to he special. I.Standardi (oninion 1.isp iloe, not lprjide any inet hod for
leterlinui gwhether or riot a variabile ha,, been pri olined s peci at. As, a i-es nit . II,,

Oss iiiacro pa ( kage is unable to isslie an error niessage wheTi a special lets variable is,

viic() ittered 'Flhe Syvniboli vs Coniioi Ln~tIisp version Of illi' iss tutacro package (hoes is sue

an error iiessage.)

(proclaim '(special z))
(lets ((z (Elist '(1 2 3))) (Rsum z)) ;erroneous expression

Ani(other Ilttation is that progriaintuier, art, not itllitweih too itssIi. value>, to lets

variables, in the bodly of a lets. (I 1 rest nii-t~ iot hite . tter or itt the variahles,
coipmtaiti OSS values. I The only. titie lets %ariAitlv, cato he ai~tt, valie i, thte uiient I te

are boiiun(l. I A\lthough~1 asi5St.!uiii'it i'Iiitch be '1uip'ir d v,,,l utiouglt. Ie lit, ttzttet

iii rt)(llice(l 1),, the oss iril pa( kag' Ailihl iitikcit \,rl en. ifusing- t,,n ; prni_,ratituir

t,, fij.oire wit' exactl) wh'lat woulhd !iPp'ii ill ;t 1.1Jo\'Ii ,T, i tt~. fri Iianiicilar. ti;ii\ I1'%

aiil. u :tijilici rInappitoz to1 setq w(PIiiti leadthooi pe( thint h-t> -ttdt'ii iilii

as,,ignitie en1hances the finctiontal itt? tir ift hr iiiutacr,) p)ake,., Ati error uivssatu

is sue tinever .10(h dii t.sgii'ti dtititI



iets ((x (Elist '1 2 3))
(setq x (1+ x)) ;Signals error 12
(Ruist x))

ii ena>pec t 4f lets %~arna bles Is that their scopc e isSeiliew Iiiat limited InI part ic

!ikar. lets Nariabit- can be referenced in a lets or maps which is inside the lets which
hn d, t ber. II owe~ er. they c annrot be refereniced in lambda or lambdas. (Os' above, this

1ii1titatol i>- Hzlp)d InI order to) avoid con1fISIOn~s due to rearranigemients. Further. 11 is

It?~vju l~i oudnerit eer to an OSS variable iii a lambda. Sittohld ,oie

'trt 4f implitcIt rIiapping" be appileol!) No at teript I', male to issue error 11s~gs i this

>1t ~ i *1.IIat ler. t he \ arialble rt'ernct lin q uestion is, itierely treat ed as it free varia ble.

(lets ((x (Elist '(1 2 3)
(Rlist (TmapF #'(lambda (y) (+ x y)) x)))) =: (5 6 7)

0lets* i r ialu pair-1list { deci} * &body expr-hist => result

[hei formn lets* is exact ly the sain as lets except that the variables- ale )oInITI

s-eqiientially inst eadl of in parallel.

(lets* ((x '(1 2 3))
(y (Elist x))
(z (Rsum y))

(list x (Rmax y) z)) ~'((1 2 3) 3 6)

e prognS &body expr-Jist => result

As -shown below. prognS is identical to lets except that it cannot contain any variable-

value pairs or declarat ions. It is a degenerate formn whose only function is to delineate an
OSS expres- Ior. This can alter the wa% limplicit mnapping is applied by includingT non-OSS

funitct ions in thle 010, expressioni

(prognS . expr-list) _-(lets (0 . expor-list)

Complete OSS expressions do not return OSS values. A key point relevant
to) the dliciissioni above is that s ' vrtacticallY coniplete OSS expressions are niot allowed
t, returnn OSS values,. [hi, is relevat becaulse lets and prognS are often used in such

a wav that ant Oss serlv, grat uitonisl% ends tip as, the ret urn valute. For examiple. the
iii ai itI rit ent of thIe f t, x p) ress, ion hell,- i w 1 to prni nt out the elemnents of the list. However. as

writtenl , e x p t Op p peatr, ret int an t oss erles of the value,, produced lby prini.
'p keaur~ expe~sinis lke te. ti I ewar neatvly coninuion. witws decided riot to issue

ail error insa~'n t hl - t IM!"'lt N1 thiir_ Ohw oss value Is siniply discardled and no

%or, ~vauei (rogn (prnrijell'(12M

J. 41, ;The output "12" is printed.

% Ift []iight he tlie ca". that the progratitier actutally deslres to have a phv~ical series

Wreturned InI the exaitple abov. I his can be done lbv usinrg a reducer such as Rlist or

~- ThRvector as ;ht)% it belo)w.

'ee 'e-- .



%: -toReference Mlanilal

(prognS (Rlist (prini (Elist '(I 2)))) ' (1 2)
;The output "121" is printed.

Preventing comiplete OSS expressions frurin ret uirig us, values (juts niot uinit what
call be written. b~ecause progranimers can always V ret urn a rron-Oss series. Til, -anl he

a bit cumhbersoiiie at t inues. but it is highly pretera ble- to the I arget I neffi ciencijes whIiich

wouldl he introduced by autoinatically conist ructling ph \sical represenitat ions for o)~ series'

* ~ Ii sittlat ions where the ret urned values art, not used in further corn~puitat i() i

Coercion of Non-Series to Series

If anl oss input of an OSS function is applied to a non- series value. the( t vpe conflIict is

resolved by converting the non-OSS value into a series by insertin-o Eass. iat is to say.
a non-oss value acts the same as ain unbounded oss series of the value.

(Ralist (Elist '(a b)) (* 2 3))
, ~E (Ralist (Elist '(a b)) CEoss :R (* 2 3))) => ((a . 6) (b . 6))

l. ' sing, Eass to coerce a non-OSS value to anl OSS series has the effect of onily evaluating,

the expre.sion which comnputes the value once. This hias mlanly advantages with regard to
efficiency. but miay not always be what is desired. Multiple evaluation can be specified

0 by using TmapF or mapS.

(Ralist (Elist '(a b)) (gensym)) 4~((a #:G004) (b #:G004))
(Ralist (Elist '(a b) (TmapF *'gensym)) =>~ ((a .#:G004) (b .#:G005))

Implicit Mapping

Mapping operations can be created by using TrnapF. However. in the interest of corive
nilerice. Two other ways of creating miapping opera tions, art, suipiorted. The miost pronii -

rient of these is imiplicit niapping. If a non-OSS function appears in anl 055 expression and
is aplplied to one or mnore arguinents which are oss series., the type conflict is resolved by

autoiatically nirapping the function over these serie> .

(Rsum (car (Elist '((W (2))
(Rsunm (TmapF #'car (Elist (iM) (2)))) --:> 3

* (Rsum (* 2 (Elist '(1 2)

(Rsum (TmapF #'(lambda (x) (* 2 x)) (Elist '(1 2M) ' 6

A shown in the second examiple. liriplicit iniappirig actually, applies t O 'Iire noiti

0S.)11expressions rather than inerely to Individual hiiiictioris. Ib III, roilio's, ellI it'iency

and mnakes -sure that related groups of fuinctionrt nra pped tovether. However, it is
nut always what is desired. For in.,tance, Ii the fir- t Xiiiple below, thle icall oil gensym
grets miapped in conjunction with tire call on list. 'Ihis, Caluses P;iclh list to contain a

seaaegensym vari'abhle. It ig i Ie thine caise that Ili p r '4raniiier war , th iave t it,

sarnt, gensym variable in each list . This e-au i~l ''.h, inisertirig an Eoss a,, Ahow% in
Nthe second examiple. (In sert inrg a Eoss here anrd thlie ianpnIiOTt e eflici en cy I) y a voih d IT)!-

uniinecessary recoilipu tat iln.)

%~ % A N % %*.*~



- .7X 1 1'W7'CtV W V W W l>,. r 7'1- -...- -

(Rlist (list (Elist '(a b)) (gensym)))
(Rlist (TmapF #'(lambda Wx (list x (gensym)))

% (Elist '(a b)))) -- ((a N-GOO2) (b #:G003))

(Rlist (list (Elist '(a b)) (Eoss :R (gensym))))

(Rlist (TmapF #'listI (Elist '(a b))
'./-~(Eoss :R (gensym)))) :z> ((a #:G002) (b #:G002))

In ordler to be Implicitly inajpped. a noni-OSS funct ion must a~ppear iIIsidt .)f allO~'

expression. For example. the instance of prinl in the first example doeso iluc -14,elc

imrplicitl nivapped. because it is not III all OSS expression. Implicit iap) pi,- -,f tlie prin 1

call he forced by using progns its shown IT Tile seconld examitple above.

(prini (Elist '(0 2)) =4' nil
;;The output "NIL" is printed.

(prognS (prini (Elist '(1 2)
;The output "12" is printed.

(Thie result of the first exanmple above is that NIL gets printed. This, happen, because

(Elist '(1 2 3)) is asynt act ically comiplet e OSS expression arid is thlerefore not allowed

to return a series. It returns no values Instead. The function prini delijands a value
anyway, and gets nil.)

Another aspect of imiplicit miapping Is that a non-OSS function will no be Ia ped
unes I is applied to a series. This is usually, but not always. what is desired. Consider

the first expression below. Thle instance of prini is miapped over x. However, thle instance

of princ is not applied to a series and is therefore not inapped. If the prograniier intends
to print a dash after each number, het has to (10 sonmething in order to get the princ to

be ruiapped. This could be done using TmapF or mapS. However, the best thing. to (10 is
to group the two printing statemnents into a single subexpression as shown in eit her of

the last two examples below. This grouiping shows the relationship bet ween lhe printing
operations and causes themn to be niapp)ed together.

(letS ((x (Elist '(1 2 3))))

(prini x)

,;;The output "123-" is printed.

* (letS ((x (Elist '(1 2 3)

;The output "1-2-3-' is printed.

(lets ((x (Elist '(1 2 3)
(format T "'A-" x)) =:>

* ,;;The output "1-2-3-' is printed

Ugly details. lImiplicit in ap pi ig is cas V to tinde(rst andl when applied lin sill'ple situia-

Vi.' rt(n" SUIChI a, the oil(- abhove. H owe ver. It ca;n be applied toi any Lisp formn. '[i b~ ecoie
% iiElIeiat muore compiliicatedI whenm (-(,ir ol coiistriicts (e.g.. if) and bundingF constriicI-

eg.. let ) are enlcountered. "ilbe e'xamiple below showks tilhe Imlicit niapping of anllf

F1his, rrealv, es lambda expression con I ai in g at condlit ion al which is iiapped over a erh

.0

le p 4*%"e . 1- '-



. w - .~ W W ... ... ... 7wt* ~ ~~~ .W . ' .*~ .~

42 H terev ic AV ta n ii]

.A key t hill, I 1 ro11ii i exil fit tie I hui I milii! i a ui Iif xr lbtr 1 triii

t,.. ~a use of Tselect. Ili particulair. Ow hr apped if rt tii, t awe.retitdui t tcr

.input. while the Tselect dtoes not.

(Rlist (if (plusp (Elist '(10 -11 12)) (Eup)))
-(Rlist (TmapF S'(lambda (x y) (if (plusp x) yl

(Elist '(10 -11 12)) (Eup))) :-( nil 2)

(Rlist (Tselect (plusp (Elist '(10 -11 12))) (Eup))) , (0 2)

Auot her aspec(t of t he waY co n (I It I-i. hit> , ftrtI Iit t i I!-:, - I j( )I,, t , i~re>,-ki 'I

illustrated below. Whleni anl OSS exIpr(>-1ii Is bewing prtt>>, etii T ) tie I, d"fTteni 1WWhitt

Should be linplicitly rflappedl. the expressit-n I, broken ii lyjlt ( ~it-ces, alI 11it1tlv
pieces,. If the argunient of a conditional i.s all OSS exprt-iii . ' Fiit tr,,!uiiiiT \%'ll enid 'Il
Ii a separate piece froiri the conditliinal it >elf. O net restilt tI ih 1a the argun eit will

always be evaluated and the conditional will t berefturt, it- it, poJwe'r toj con t rol whe bt the

argunent should be evaluated. Tb i'; effect wil I a p pcil i\tf it, asIn thet exaln pIe hio w.
%the conditijonal does not have to be inappedl I'lhe t hiret, t xajutpbs, hetlow all prioduict t he

same value, but the first two always evaluate (Rlist (abs (Elist x) while !t(i last
lia.n t

0 (prognS (if (Ror (minusp (Elist x))

e (Rlist (abs (list x))
X))

-(prognS (funcall #'(lambda (y z) (if y z x))

(Ror (minusp (Elist x))
(Rlist (abs (Elist x)))))

(Rlist (abs (Elist x))
X)

Thlle foltw examiple show., the iliplii ripitn Ialt hIitgohrtir

this illustrates that such expressions are far froin clear. Ili iritral It is better to ii~c letS

it, in t lhe sectond exauriple. I

(Ruist (let ((double (* 2 (Elist t(1 2)) (* double double))
-(Rlist (TmapF #'(lambda (x)

(let ((double (* 2 x)) ( double double))
* (Elist '(I 2)M) ->I (4 16)

(letS ((double (* 2 (Elist 1(1 2)))
(Rlist (* double double))) 4 (4 16)

A prioblenii withi thle iiiiplici iiiappi rig ()t it let iA I okct I i~li~ t'i s ht tlit.

* ~ ipii mnapping transforniation potentially inix-e, .it'pitr Of thet '(41pe tif tlilt

binding torn in question. This can ch ange thc riit.;1iiru1 )I t he t~r'.o~If divI t lif~t

-auhexpressions contain anl Instance d' a variable bound 1, ! lw hniirn11_ fori. kao iii~t tine.

Ii the examiple above, the transformiation mio~vs the ltire>ti(Elist '(1 2)) wl
-)f the scopc of the let. This would causeapo -i fli.ieipt ir et(reli h

* variable double.

% p_%e S -.. , .",



Iitiplici t .Xla ppIii

i Ihjinliliz tirii its' a Lriaili~c tfre ii w~ uIrtve it ,I a kiriii Ii at l! \ate

* .A finl ixiti tlviv'( !rni, Itke return. return-f rr throw. et'. I i.t,1'rii

a re I i ri lIc I ti I I it jI pet, I Ike ait i I ht er t i I-(I I ti r Ii. \\ ,11 if , I \t 11It -o I . t i Y

a. iif i I i> T r .uoriI h e 14l 1 prt III fiui l it 1~.i Ito' ;i1 1) at 11,1r i r

retnil t .tiiI I i I, Il 'ii nda r iiI ii It Ili 1t,11 ni I w h ii \Il II - at- I reofer, it, N11 T C

valules. Hiowieer. iriplicit Ilia pilil 1L nI- [t Appjliel w horl us itnit it- ;e it fI '--.

even 1if these, valuies itre pas~cul ,, iii'fl Is nplit - 1V llTntridltihi i ll

'itatlii ocur. n rroIr 1ie ,a~ i-lwtie

I,(Elist (Elist ' (( 1 2) (3 4)))) ;Signals error 4~

Thiere Are sIitatiit (irre~pi)fIII r~'l l,,t)ict iji.wp iOlc tr Iuli' j (,!ti Il 1()

liniFlicil\ tiiapi sunhexp rt-,sor I I itatiri '! tII S% titlict An- h alnfl Ilil it ' yt

the followliu- expression lit orfer tot (ip)V at 1jt if it .

(Rlist (Rlist (Elist (Elist '((1 2) (3 4)))) ;Signals error 14
(Rlist (TmapF #'(lambda (x) (Ruist (Elist x'))

(Elist '((1 2) (3 4))) ((11 2) (3 4))

_0 '1;~evertheless,. expre -. iii like t lie, firt )it,- ablb i:rte forhiddlen. Thlis 1 s fine for

twoi reasoti. IVirt . 11I ll( in rt CttIIjil'x '-it I Ia t 141 - ( ms ,oI ix r, -, ,I I-.I iur r prlii~ I i II I' I 11't ( te(d
lIfI ) tCI )III V ( > ()III 1 iit i Ii t hat uciif v expI)r( esi-ori art- I, er I i har t i it, ersi tan(i . Ai

result. the atre riot vt'.v iieful. Send. ('xlei'tii ti~tIhat a larige p)riijirtioiii ()t
stiuat in> w here uipi~Of OSS f'lunCt Mio ight Ie lon d1TIris' trout progrrailiiit- c-rorrs

rather than an intenrtHill t o have at Tiit eil loowp. 0)it tlitw iti, fit-e exj sitIia ake, It
a-pussillo tI Iihul t heme err(irs niore (I ii,K1 v.

i IPit fod lokIn riif (-x~tit pe il ow, li at t tlen' 1, no( fir. i 1  
i it fiIi ii ot ie w ii i( ) i i I-

p ll atioriI ' llirIi , an ter. Ilitri ir, iit I pe I it tit. It T, 1 -it 1I(tIII it I i!( Io mplicit

a) ~(Rsum (Evector (Rvector (Elist '(1 2))))~

Ncc~hle-. i-, it ii llk lie litiretisi, iahlit th re %iore it) ii ;t t write ()s ix r-.ii
c.iiirresporiri l t ' rt , Ii o I-I'-t of ;1ll. this, .111 a ;c - I,~ loti -ii TMapF ;1- IwIT1
thove. 1f,jweiior. thu I iI;tit tw ratfwir tntIil.I-r-,.ot IIe I i alleviate I' 1 1 (fffhiit\ an11 il ii t HI)iall

0 mapS &body ot-pr /1i-: Ie,1

-ellIHill0. P~kr It coil.- Ii d"i wit, rit rv cxprc.i-i-. I i-*pre,"iit II tre Tu-ti-I t the
6 (1( o i t I flit 14Ill al i n Il ia pjiil w ci r titI, frii t r I r t I I IA it i r pa I t eI Ii I f iat

is1 to Hayte ihrst eli'iiiiiw of thil witplit 1, i 4tiplited hi t\(IaIititIl tIt"~i--it' III All

0
10.

a-W
% %%,

*aa~~ ~ %a~a-*



II lReference la iiiii I

criviroiiiew whieret' itch oss %a r itl1It, 1111 u1ii 11 ir I e I i vi~ of t he I r-r 4I I I I(IIII_
Tti~ he second eleinent of the GIuti)ii umiitd ;e rlimat ig hel exrs'u> in

* t-'ii viron me itt where each oss variable is bouind1 to I he >,eco iii eleinen (d' thle corre>p' ilii mu
>eries. etc. the way maps could be usedj I copy a 11,t ofe-i I. n Iiwni hi)w .A lets hia>,
to be used, because maps requires t hat the series being inappeil over nninm t be hield in at
variable.

(lets ((z (Elist '(( 2) t'3 4))
(Rlist (maps (Rlist (Elist z)))))

(lets ((z (Elist '((1 2) (3 4))
(Rlist (TmapF #'(lambda (x)

(Rlist (Elist x)) z)) ((1 2) (3 4))

(Rlist
(maps
(Rlist (Elist (Elist '(( 2) (3 4))))) ;Signals error 14

*Iniplicit niapping is very valuable. F'ronti thle abo)ve, it can be >,eenl that alt hoingli1
I 1iiplicit ilia pilng is, >inimple In simiple -,It uations,, Ithere are a itnmber ()f >,inatioris, where it

2 I ie~hcoiiie, qu~it e cotiplex. There is rno lue't ionl that these corn plexi ties dfillite lhe value of
Iiliilmcit i ap pinrg. Nevertheless, experieCTIe sget that inmuph cit ia pping is so valu able
tiat, wart>, and all, it is perhaps the mnost useful single feat ure of OSS expresslis.

Literal Series Functions

.11, it, i t is very convenient to 1be able to speCcify a literal non-oss function using
lambda. it in-. -ortietinies convenient to be able to specify a literal Oss function.

9 lambdas var-list idecil* &body expr-list

"he forin lambdas is analogous to lambda except that somne of the argumnents, can have
()SS ,crit- passed to themi and the retmirni value (can be anl oss series. The var-list Isl

sm Ip hall thle lambda lists which are ,upported by lambda. In particular, the var-list
imust consist solely of variable namie. It cannot contain anyv of the lambda list keywords

suIch a., &optional and &rest. As in a lets, the variables in the var-li'st cannot be assigned
to ti the expr-list or referenced inside of a nested lambda or lambdas.

4 As in a lambda. the body can begin with one or niore dleclarations. All of the argu-
inents which are to receive OSS values have to be declared inside the lambdas using the
dleclarat ion type ass (see below). All of the other arguients are assumied to correspond

1)norm- 055 values. .Just as in a lets. the declarations miay contain ot her kinds of dlecla-
rat ion,. bsildes type ass declarations. However. the variables lin the var-list cannot be
declaredl (or proclaimied) to be special.

The expr- list i:- a list of expressions which are grouped together i nto an OSS expres-
in I, a in a lets or prognS. 'I'he( value of the function speciftied 1)), a lambdaS is thle valunie

,)f thie ltist forin li the expr-list. Thi.s value mnay or inay riot be anl (s )SSieme

lIn niianmv ways,. lambdas bear>s tie( sane relationship to lets that lambda bear,, lo let.
Howe-ver, there ins one key (liffereice. The ex pr-list in a lambdas cannot refer ito anyv
free % ariables %&III, Ii are boin 1(iv a l ets. defunS. or amiut her lambdas. I'>chmi lambdas is

-. W _4 ,

% % % % "



chn)etii, Series Fim t ioll .

processed in complete isolation from the oss expression which surrounds it. Fhe oIl

values- which can enter or leave a lambdaS are specified by the var-list and non-oss

.: , ,ariahles which are )MIInd ,I 0 t.ide of the ,.ntire c0,lta inInZ OSQ Oxprestio, .

Another key feature of larmbdaS is that the only place where it can validly appear is as

t it,' quoted first argument of funcallS (see below). or as an argument to a macro which

will eventuallh expand in such a way that the lambdaS will ,-nd up a&- ihe quoted first

."p. argumn'tt of a funcallS.

I'he folloviii , exalliple illttrate> he use of lambdaS. It shows an anon Vtolis OSS

I fn tiot i entical to Rsu.m.

-%+ (funcallS #'(lambdaS (x)
(declare (type oss x))

(ReduceF 0 '+ x))
(Elist '(1 2 3))) 6

• type oss &rest variable-list

T "his tvpe declaration calL only be llsed inside of a declare inside of a larbdaS ,r a

defunS. It specifies that the variables carry 0s values.

e funcallS function &rest e.%pr-li't = rsilt

This is analogow, to funcall except that function can be an oss funmction. In partic-

-' ilar. it (an be the quoted nane tf a seri,',, fuiction. a quoted lambdaS. or a muacro call

which expands into either of the above. It is also po.sible for futimtio b i i, t e non -oS,

function. irk which case funcallS is identical to TmapF. If function i, at exprtssi which

*m• eOvaluates to a function (as opposed to a literal function). then it is a>tinumd t,, be a

i-imi -Oss function.

(funcallS #'Elist '(1 2)) __ (Elist '(I 2)) -- [1 2]
(funcallS #'(lambdaS (y) (declare (type oss y)) (* 2 y))

(Elist '(1 2))) => [2 4]

(funcallS #'car [(1) (2)]) :=:> [1 2]
(funcallS #'car '(1 2)) => [I 1 1 1 ... ]

[He number of expressions in expr-list tnust be exactly the same as the number of

da,., argmnfiuts expected by fiuiction,. If not, an error message is issued. In addition. the

* • t) pe, of valties (either osS ,ere, or not) returned by the expressions should be the same
.%e ;I, the tvpes which ar, ,.xpected by ffinction. If not. coercion of non-,erie to series will
%," h ,"o applied if po..sible in ,order to reolve the conflict.

Defining Series Functions

n\t imprtant aspect of the O)s, tmacro package is that it makes it easy for pr(),rani-
%. ,,wr t,, defiie new 055 fn n'tin,. "t raight forward oss functions can be defined using

t NO. f;,iit,., outlined %low. or m ,', plex oss functions cati be defined tinit, the sib-

s s I, it i ' tI a cilitm ,'> It ts,'ri1)e'd ill ( .

,-7-'., ":. r V ', "' *

. 1 ..
., '.',

r t"% 5"% P ' % + " """"" ' °,g ." .* ," . . € , ." . " . € , " . " ," ." .' " +"""'"'+% " '' _,' O ,i, , ," ,O ,P ..'" " ° " .7 , ' ,.-,,ll ' '.''"",i . ," ,, " ' ,"+- ." 4 ," ,# "'", , +, • . ",, .,.



4t~ Reference AIanrial

9 defunS zidiliC laiiibda-li'.t {docj. { ded * kbody ex pr-li'!
'Fill,, is analogous to defun, but for uss futict ott>, .A t iniple lex el. defunS I>, jl1>1

svtitartic sugar which defines a miacro that create, a funcallS of a lambdaS. The laiiiI(la-

list. declarations, and expression list are rest ricted iI rix'act ly the samie wa , VasII it aW

lambdaS except that the standard lambda list keyword-. koptional and kkey are allowed
.InI the lamrbda-1ist.

(defunS Rlast (items &optional (default nil))
"Returns the last element of an ass series"
(declare (type oss itemrs))

(ReduceF default #'(lambda (state x) x) items))
(defmacro Rlast (items &optional (default 'nil))

'V.."Returns the last element of an ass series"
'(funcallS #'(lambdaS (items default)

(declare (type ass items))
(ReduceF default #'(lambda (state x) x) items))

,items ,default))

Ilowever. at a deeper level, there is a key additional aspect to defunS. Preprocess ig

% ~and checking of the resulting lambdaS is performied when the defunS is evaluiatedI (or

(0Oil piled ). rat her than when the restilting Oss fu t ilon i, used. This saves, t'rie whle

he function is used. More iport anit l. it leadls to better error riessageh because error

ite> sages can be Issued whenI the defunS Is Init ially rcotint ered. rather than when lie
O funlction defined is used.

.\lt bough the lambda list kevwords> &optional and &key art- stipported by defunS. it
>h udbe realized that they are .supported in thet way t hey are supported by mnacros, not

thit way*v he , vare s.upported by funictionts. In particidar, when keywords are used in a call

('1 lhe 0,; s i ti (ii 1 beinrg defi ned. t he) have to be lit eral key words rat her t han corn ptit ed
it\ ant expression. In addition. initializat ion toriti s cannot refer to the run-timie values, of
01ter aruuiierits. because these are niot available at uiacro-expansion-timie. They are also

* niot allowed to refer to the miacro-expansion- time va lue, of the other argumients. They

tiii it st and by thenselves when computing a value. A\ quote is, Inserted so that this value

wIl bcoMputed at ruln-timie rather than at mnacro-expansion-tme(ntheapl
above. (default nil) becomes (default 'nil).) ip r l ft e sa d rIt mnay scent unduly restrictive that defunS does niotsupraloftetndd

keywords in lanzibda-list. However, this is not that mutch of a problemi because defmacro
cart b~e us ed dlirectly in situations where these capabilities, are dlesiredl. For exaniple.
Tconcatenate is defined in terms of a miore primiltive oss function Tconcatenate2 as

(defmacro Tconcatenate (Oitemsl Oitems2 &rest more-flitems)
(if (null more-Oitems)

(Tconcatenate2 Caitemsl ,Oitems2)
'(Tconcatenate2 ,Oitemsl (Tconcatenate ,Oitems2 _more-Oitems))))

*I sIing defmacro directly also inakes It 1)Ps.1ible toI d1T' 1,1W higher-order osfuti-

- tioi- -For exarriple. art Osi function analogotis to substitute-if could Ibv detitie-d ;ts

foll,,k. [ Ihe Eoss cioiiet thit newiitem ll III011, IW t'%,1 II 1d Iio

W .- %



XL0 Ip--r--nn n-- - w -- -' . .- *

(defmacro Osubstitute-if (newitem test items)
(let ((var (gensym)))

'(letS ((,var ,items))
..-. ~(if (funcall ,test ,var) (Easc .R ,-,ewitem),a))

rV:(Osubstitute-if 3 #'minusp [1 -1 2 -33) [11U 3 2 3]

~-. I'Multiple Values

Thei OS'S riacr() pack;q-i stlljistil riuitiple value, III a llriililher o(d rrr~. i
Cll',ied alitve, letS can be used to hind variables. to iulitiple values retulrinedt b.- (i (

funictioni. Fa cultiles. are also provided for ocfinuil! OSS functioii wv rtutimmi

valuies. T he support for iul i pie values is conipiic ate (I by the fact that thle OS~ 111icro

package imiplemients all ('0111 mu n le~ar i (l of va I ies by usi rig variables. A s a res u h . It is, t

psible to support the standard Conuuion . pfeatumre that m tilt ipie va I ie can it '

with Ins gle valuecs wit houit the ro.gra niiier havingu to pay wi!tich at? ent ion 14 whiat Is -'(wT.r
IV ~~Oni. When tising- 055 expressions, the progranitiier has to be explicit abou;tt how%% naiv
V.values are, Ieiiig passedl arotund.

e valS &rest expr-iist => &rest rnriltiple-valize-result

% ~This is analogous to values except that it c-an operate on 055 values. It take., Ii

the valutes ret urned by a1 different expressioni,, anti ret urns t hen as n miiti pie values. ft

enforces the restrict ion that the values iiiust eit her ill be 055 values or all be nIon -055,

values . TIhe following exanipie hituvs how a sill pple version of Eplis t could be defr nedl.

(defunS simple-Eplist (place)
(letS ((plist (EnunerateF place #'cddr #'null)))

(valS (car plist) (cadr plist))))

It is, possible to use values in aii OSS expression. However. the resul ts wvili be very
di1fferen t fromt the results Obt a inedi froinr~iu valS. T he values will be iplicitl iv apped
like any other nion-oss forum. Thle valuie tiltlilately retuirned will he the single value

retutimed by TmapF.

(prognS (valS (Elist '(1 2)) (Elist '34))~'[.2 34

* (prognS (values (Elist '(1 2)) (Elist '(3 4))))
E(prognS (TmapF #'(lambda (x y) (values x y))

(Elist '(1 2)) (Elist '(3 4) [1 2]

*pass-valS ii rxjr z &rest iritiltipi' value-rc-01f

hsfilitliori 1 isied es'-,1ialy a at teclhiraion~. It tells the 055 iiiacrt packa-te liar
Ilit forni -qpr rvt lirris 1 i 11111 lil a t' i-' wliitI'h-r IIl'( p rogyraiII I I r wl is to have p rt's('rve(I
ill th lit' tiilt'Xt of the 055 t'xlrt',liion. H I1w 1, nweet because (oinlon Lisp tioes nit

.rprtivi tlt' an ioniiile tithe way to dtteruliie th li' nthilwr of argunilents that at ftinction wAill

r J t hl. le first exalilie lwtli)w ,wmilter;0iit a lit of syvinbols and ret urns a list of the,
r,-tuion

V p.



(letS* ((names (Elist '(zots Elist zorch;-)
((symbols statuses) (pass-va!S 2 \f~nd-symnbc: string names)))'
(internal-symbols (Tselect (eq statuses :internal) symbols))i

(Rlist internal- symbols)) 4 (zots zorch'

(defunS find-symbols (names)
(declare (type oss names))

(pass-valS 2 (find-symbol (string names)))

(find-symbols [zots Elist zorchi)
=> [zots Elist zorchi [:internal :inherited -internal]

Ili It, frii pass-valS nevr him h 10 Ill d 11 iit (III lct w 2 l il art " 1111 t 1a i,1. 'c

the cis, iiiacro packag.e know, how iiiarnv v~li~e\erv fiiitai mr ret urn - Srjia
pass-valS niever liar. to be usmil whei. ititiltiple %-aluies are 'irri hlirti fl lets. Ilecani'o I fie
,Ynt ax of' the( lets indilcate8 how nianY valuies are ret tirn-d. .\ a resuilt. t( pass -valS
in the first examiple above rinot necessary.) However, in it ,tiatins ui a tilte seconid
exaniple above. pass-valS rriui t be uised.

Alteration of Values

I[it, t raii frriiiatoris Initrodluced byv the os'- miacro pac kage a-,e iriierentl\ awit ig()ilc

4 ~to thet rri.,(riiations, Introduicedl by the miacro setf. li! particular. OSS hrinctio)1 c;illl
caunt) he IiSed as tile, destinationi of a setf. InI order to _fct around thl , proheri. the( oss
irac r' package stupport s a separate const1ruct which I lit tact triure powerful t han set f

*alters 'e4taoi itenis =: Iteril

I il torlin takes lin a series of de,,tinatioiis and a (,rl(es of ltitems and stores the iterii ,
III thie dev,1Iraion. It returns the series of iteii. Like setf. alters cannoit be applied
to) a tdest Mnat loll 1uriles', there is anl associated lefinilti)ni fi)r what should he oone t see hII(
olj~cilis:tori of' alterableS in 6 t. The outpwts of tlie preolelittleo functions Elist. Ealist.

Eplist. Efringe. Evector. and Esequence are alterable. The effects of tis. alterationl
are illuLst rat ed in conjunction wit )I t he descript ionls of t li-.e finctioii> For examiple. t he

followi rig -et s all of the, elemientF in a list to nil.

(let ((ist '((a .1) (b .2) (c . 3)
(alters (Elist list) nil)
list) =: (nil nil nil)

ao related exaniple, consider the l'0lluwiig. \1Thlonulit setf cannot hie applied t,
,Iii 4 I'l tinctiPiri. it can be applied to ;I Itoii)S fIlI!ct ),I ii i OS 05 xpre sion. I n thet

- (lXttIple Ielow. setf s uised to ,v thle cdr (d each el'iIii'rit ofia list to nil

(prognS (setf (cdr (Elist list)) nil))

list) -:-((a) (b) (c))

\ke, feait irt of' alters v.' that l ilt tiitrasI toI set~f a >t rut un canl he altered b%
;(plvilig alters! it a ariable wili, Ii coitaji> 'itiura'f.'rinso thle ,t riict tire. I 1i>

* I j-'+ I hoeaiila ilie old Valll li i ;i at iructulre, ani I," ~ I'1 t1 1 I ie w fiat new \a Ilii

: <il)Id 1w put li lie( truck ire. I %licin alters i iplivd ito n t i t varliable It iiitoille>

Iho t rit Iire ti)11, ii n i itittrh- 101 ot t I I,- iit Infa g 1 i t, %f t i riaihIle. *-.

44k

% %



(lets* ((v #(1 2 3))
(x (Evector v))

(alters x (*x x))
(valS (Rlist x) v)) 1 3) #(~ 1 49,:

Aniot her interestinig aspect sst alters i> that it cani he aipplied! to the out put> of a

n~umiber of tran-,ducer>. This I, pos I ble whenever is t ra tii Iiicer pa,,e t htr. ,ii, Ii ii,- iianed

at s>ernes of values taken fromi an :Tnpn1t which i>, itself ithtrable. Thi, ctsit happen with thI

tranissucers Tuntil. TuritilF. Tcotruncate. Tremove -duplicates. Tsubseries. Tselect.

TselectF. Tsplit, ansi TsplitF. ts',r example. the tWswni~take>, the albmdnite \,h dliis

the eleitenit of a vector.

(lets* ((v #(1 -2 3))
(x (TselectF #'minusp (Evector v)

(alters x (- x))
v) 7::: X(i 2 3)

Debugging

I. he 01Ss miacro p~ackage supporta it miilber of feat ures w'~hich are in tenided to facIi itate,
debugging. One example of this is thle fact that the macro package tries to uise thle varliahie

niames which are bound by a lets ti it hie codle produnced. Sincle the mnacro Jpacka ,e i>, forced

to use variab~le rena mming in ord.er to Imnplemlen t variable so-oping, it cannot gina ra nee t hiat

% tiese variable namies will be used. Hlowvever. there is aI high probability tha~t thliey will.

~, * If at break occurs iii the miiddle of ani OSS expresion - these variables can be Inispect ed,

tin order to determine what 1., tzoung on. If at lets variable holds an 055 series. Then the

Vitn a Ke w ill contain t he c urrenmt elenienit of thle series. For exaniple. the 055 ex pres stom

K ~below is t ransformied H ito the loop Thown. [ or a discussion of how this, t ra'fssrniau is il

is perfornmed see 6.!

(lets* ((v (get-vector user))

(x (Evector v))
(Rsum x))

(let (#:index-9 #:last-8 #:sunm-2 x v)
%* (setq v (get-vector user))
*(tagbody (setq #:index-9 -1)

(setq #:last-8 (length v))

(setq #:sum-2 0)
#:L-1 (incf #:index-9)

(if (not (< #:index-9 #:last-8)) (go oss:END))
(setq x (aref v #:index-9))

* (setq #:sum-2 (+ #:suin-2 x))

(go #:L-1)
oss:EID)
#:sum-2)

%:* shows thing &optional (bsrmar -/-S") ( ,tream *standard--output*) =>tii-

I hP, functionl i esmuivIeuient s)r printing out debsugging Inftormtation while amin - ex

fpr!ssion 1i being evaluinat ed. It can iihe wrapped arond any expression no) ;iat t cr w hiet her

% %



-A) Referenceu Mii u

it pro (Iice ;ii oss value or a noni-oss value w It iotit (11t tir tig (he containing- ex p re,,>i(Ji.

[ he functioni prints out thle value and then ret nii> it . If thle value is a nori-osst lung1(.
it will be printed ouit once at the timie It Is cre~itel. 11' it is ani OSS series thing. it will

be prinit ed utt an elemnent at a timie. The( lOrini at b e ulsed to print a lag in order T

identifv the value being, shown.

(showS format stream)
(let ((x thing)) (format stream format x) x)

(letS ((x (Elist '(1 2 3)
(Rsum (showS x "Item: -A, ))) = 6

;;The output "Item: 1, Item: 2, Item: 3, is printed.

0 *permit -non-terminating-oss -express ions*

On the t heory that non-termninating loop,, are seldomn desi redl. the oss miacro packag4e
checks each loop constructedl to see if it can termninate. If this, variable is nil which 1,

he default ), then an error miessage is issued for each loop which the oss iiiacr() packauc
thinks has no possiblt of temnaig This is useful *in the first examiple below hbut

not in the second. The formi compiler-let can be usedl to bind this, variable to T arounld
;~uch ant expres;sion.

*(Rlist 4) ;Signals error 15

(block bar ;Signals error 15
(letS ((x (Eup :by 10))
(if (> x 15) (return-from bar x)

(compiler-let ((*permit-non-terminating-oss-expressions* T))
(block bar

(letS ((x (Eup :by 10))
(if 0 x 15) (return-from bar x)))) z'20

9* last-oss-loop*

This variable contains the loop inost recently' prodluced( byv the osS_ miacro package.
A-fter evaluating (or macro- expanding) an ()SS expression. this variable can be inspected

iii order to see the code which was produiced.

**last-oss-error*

This variable contains the miost recent ly pri Titedl error rnt,,s agle produced 1)*y the 055s

inacri) package. The informnation in this variable canII be uiwflil for tracking down errors.

Side- Effects

0' [lie ()SS inac ro package w orks b 'y converting eachi ( )s, ex pre ,sion in to it loop. 'I 1iP

allow, the ('xpre,,sion-t to be evaluiated ver\ fI1i( lent lv. liii radically changes the ordler

in which coiinputation , are- perforined. In ad(Iit Ij0uni. n Il-ineT ports are, >utpportvd bY code,
iiot ion. ( en all of these changes. it is niot >iirprisirig that ( ss expressions, are pri ninard,%
Intended to he used in situations where there are rio side-ffle(-t>. Due to the ha ITeIi

Conniputati(Jn order, it can be hard to figret out what the result of a side effect wifl i

A



Ncvert ,Ilss nce(1 sIdlelets, part it Ira rv Iii t It frii of' Ip tit titl domt pit IIare an 1

inevitable part of prog-raninintug. several step., are taken in order to miake thle be-havior of
SOSS expressions COi'ori1aiiiii sidteffect operit iofl- ;i.a- t,, imdv~lr&t ai! a, 1),Isiljle. Vir.s

h%[ell Imrplici t niiapping is applied . It i a pplied to a> lar:ge at Uhtex prv>>io ii ;as j)0sSIbI1l.

-11hi akes it straighitforwa~rd to midi(ert arid thle interaction of the, jIe-cffect,, wilit a

sigeniapi)ed subexpression. Several exaritides of' this are given iII tHie >eet ion abmoe

e ~whichI discus ses Imnplicit 1liapping"T
Second, wherever pos-sible. thle 055 miac ro pac~kager leaves tie( order ,f* evahiakiIo o If

the OSS funlctions *111 an1 OXfeS Ion unchanged. Facli hinctiori IS ev-alated iiierteetali

ani eIlenrent at a tinie. but oni ea1ch cyl.thle lproce->iti follows thle sIvnt~itjl ,rdlerlm! (If
the furnct ion,- in the expressin

-~ '1' lie one place where order changes, are requi rcl is, wvhen hanidlimi off-li iie ports. II oxx-

ever, things are simplified here by ensuring thIiat the evalua tion order Inmplied 1hy thle order

of the inputs of an off-linle fundtion is. preserved.

Third. wvhen det erin inig xwt her or not each termination point 1,> co ii nect ed to ever v

cut put in each on-line s ubexpressioni. functions whose outpDuts arre not used for an vlt ihu

* are considered to be outplut, of thle sulbexl)ression. The reasoning behi nd tIi sis th at if
the outp1 ut--, are not used for a nvthi rig, then the fu nction iu st be being xiiued for sIde-effecl

and it must matter thal the functioni get evaluratedl the full number (if time> it Aiould be.
For example, consider the expressions below. The first expresion print s out thle niumrbers

ii a list andl ret urns; the first neglat ive ntumber. 1Thle second expression >igmails an error. If
it (1id not signal an error. it would fail to print out all of the numbers in t ie( list . because

Rf irst was cause the expression to terminate premnaturely.

(letS* ((x (Elist '(1 2 3 -4 SI)
(princ x)
(Rfirst-passive (TselectF #'minusp x))) rf'-4

;;The output "123-45" printed.

(letS* ((x (Elist '(1 2 3 -4 5)))) ;Signals error 18
(princ x)
(Rfirst (TselectF #'minusp x)))

I%
%0



,52 1i bliora p h v

3. Bibliography

1 .\. Aho, J. Hopcraft. and J. Ullman. Ihe De',l n a ild An, I'd -i- ot(',,mpt t

Algorithms. Addison-Wesley. Reading .NIA, 19 7-.

2 G. Burke and D. Moon, Loop Iteration .Macro.MfT I.('S 1 .\I HO)..1July fejo).

3 R. Polivka and S. Pakin. APL: The Langiuiai. d 1 It I .a, . Hal'riti,,' l,

Englewood Cliffs NJ, 1975.

4' G. Steele Jr., Common Lisp: the Language. Digital Pre,-. %haynard .N1.\. I 1.

5' R. Waters, "A Method for Analyzing Loop Programs". IEEE Tran-. ,m .Sftwar
Engineering. 5(3):237-247, May 1979.

4' 6 R. Waters. Synchronizable Series Expressions: Part 1I: Overview of th Thworv al-I
4 Implementation, MIT' AIM-959. November 1987

7 Lisp Machine Documentation for Genera 7.0, Svmbolics, ('ambridge NA. 111i6.

44-',4'p

. %.

% .%

.'

0.,:

"V"5

o!



Error Messages

"' , l ,? it order to facilitate the deloiging of ()ss expressions. this section discusses the
various error messages which can be issued by the oss macro package when processing

the functions described in this docnent. Each of these error messages is printed out in

. the following format. (This fOrniat is hown its it appears on t he Syxnbolic, Lis p iachine

and may differ in minor ways in other stniems.)

Warning: Error err)r-nitniilr in OSS expression:
c,?nta inring OS, "' expre.,siON

error nie<.age

%.. For exairiple, the following error niessage night be printed.

Warning: Error 1.1 in OSS expression:
(LETS ((X (ELIST NUMBER-LIST))

(Y (EUP (CAR HEADER) :TO 4 :LENGTH S)))
(RLIST (LIST Y X)))

Too many keywords specified in a call on Eup:
(EUP (CAR HEADER) :TO 4 :LENGTH 5)

The first line of each error message specifies the number of the error. This number

is useful for looking up documentation for the error below. The next part of the error

Message shows the complete oss expression which contains the error. This makes it easier
.. to locate the error in a program. The remainder of the message describes the particular

* ~error in detall. (The variable *last-oss-error* contains a list of the information which

was used to print out the most recent error found by the oss macro package.)

The oss macro package reports errors using warn so that processing of other parts
of' a program can continue, potentially finding other errors. However, each thnie an oss
error is detected. the oss macro package skips over the rest of the oss expression without

performing any addition checks. Therefore, even if there are several oss errors in an oss

S., *xpression. only one oss error will be reported. When an oss error is found, a dummy

value i inserted in place of the erroneous oss expression. As a result. it is virtually

itnp,,.ible for the containing program to run correctly.

:\ key feature of the OSS error messages is that they attempt to provide large amounts

S,44 coitext nal information by printing out portions of program text. Given that oss
Xpreo throigh multiple stages of macro rrocessing, the macro package has to

w)rk (quite hard in order to try to ensiir o that the program text printed corresponds to

actual u-i'r i uput. rather Ohan >tmie interniediate stage of the processing. The package

-. -( 11i teite uc,',,' ,fil ii doing" this. however. in certain obscure situations, it can fail. In

W, 'irtic,,lar. ii i- 01, 11'tirrifs Iiable to locate any user text to print out. W hen this happens,

; "' printed in lieu of a piece of program text.
The hociientation below describes each of the error messages which the oss macro

.l,tckag,, can prod,uce. Each description begins with a header line containing a schematic

9..i reidition of an error mnssatv. Italics is used to indicate pieces of specific information

'. which is iriert ed in t he miessage. T he number of the error is shown in the left margin at

0.!1

,N. V,



54 Error Message.,

the beginning of the header. For ease of reference, the errors are described in niiierical

order.

Local errors concerning single OSS functions. 'the following error niesages
report errors which are local in that they stem purely from the improper use of a single
oss function. These errors cover only a few special situations. Many (if not most ) local
errors are reported directly by the standard Common Lisp processor rather than by the

oss imacro package. For example, if an oss function is used with the wrong iiibiiler of
L*' ,, arguments, an error message is issued by the standard riacro expander.

1.1 Too many keywords specified in call on Eup: call

1.2 Too many keywords specified in call on Edown: call

1.3 Too many keywords specified in call on Tlatch: call

Each of these errors specifies that incompatible keywords have been provided for the
indicated function. The entire function call is printed out as shown above.

2 Invalid enumerator arg to TconcatenateF: enumerator

This error is issued if the enuiierator argunient to TconcatenateF fails to be an
enumerator-i.e., fails to be an oss function that has no oss inputs, at least one oss

output. and which can terminate.

3 Unsupported &-keyword keyword in defunS arglist.

This error is issued if an &-keyword other than &optional or fkey appears in the
argument list of defunS. Other keywords have to be supported by using defmacro directlv.
(See the discussion of defunS.)

I AlterS applied to an unalterable form: call

'This error is issued if alterS is applied to a value which is not alterable. Values are

alterable only if they come directly front an enumerator which has an alterable value.
or come indirectly from such an enumnerator via one or more transducers which allow
ait'rability to pass through.

Malformed lambdaS argument arg.

. tis error iressage is issued if an argument of a lambdaS fails to be a valid variable.
itn particular, it is issued if the argulnent, is not a svmbol, is T or nil. is a symbol in
the keyword package, or is an &-keyword. (It is also erroneous for such a variable to be
(lociared special. However, this error is only reported on the Symbolics Lisp Machine.)

6. 1 LambdaS used in inappropriate context: call

lhis error message is issued if a lambdaS ends up (after iiacro expansion of the
sirroiinding code) being used in any context other than as the quoted first argument of
a funcal].S.

7 Wrong number of args to funcallS: call
Shis error message is issued if a use of funcallS does not contain a nuimber of argu-

inients which is compatible with the nmiiiber of arguments expected by the oss functiol a I
argulielt.it

O% % % % % % %V.



55)

"Only ri return values present where III expected: cil
Ih11i , error Pe~~ iisudIf an ()s, function 1 is ued in a situation, where it Is

expectedI to ret urn rii4rt, vii.hai it act tiall doe,~ for exawple. If ai lets tries to h~ind

two \ait' ronii aii os, tiiictioii whichi )II lv return:> one. or pass-valS tries, to obtainl two

values froiii an oss ftiiioi wich *)nlv ret urnis one. Noil-oss flinctioiis ret urn extra

valuies of nil it' the% art, rc 1uv.tc to rdc inorc values than they actually (Io.,

.P .~~' -a r i a l . I h f l l w
Errors concerning OSS %aibls IefloIng errors, concern thli creat ion and

lie of lets an 1 lambdas varniable> . Like the ones above, thev. are quite local in nAua ire

andl relatively easy to fix.

(j Malformed letS{(*} binding pair pair.

This error miessage is issued if a lets or lets* binding pair fails to be eithber a !I of

a valid variable and a value, or a litof a list of valid variables an(' a value. li e crit er!0T!

for what mnakes a variable valid Is the samie as the one usedh in Frror -. xcTpt f iat o

binlding-J pair canl contain nil ins tad( of a variable.

10 The variable var erroneously declared TYPE OSS in a letS{*V.

1,111s m'aeis i >i'lif' a va ri a le in a lets is explicit lY declared 14o he ( t tVIC OssS.

I I The letS{*} variable variable is unused in: call

ofThis error iiiessage is; issued if at variable in a lets is never referenced in the body
ofthe lets. Note that these variables cannot be referenced inside a niest(ed lambda or

lambdas.

12 The letSf*1 variable var setqed.

This error ritessage is, i-Suld if' at lets variable (either oss or non-OSS ) is assigned to

in the body of a lets. ft is also issued if any of the variables, bouind by a lambdas or

defunS are assigned to.

Non-local errors concerning complete OSS expressions. Ihe following errors
conceriin -1ocal probleims in 01,s expressions. The first two are discussed in further

detaIlII In the 11001 o)n nIItAicit 11appIng.

1:3 Decomposition moves: code out of a binding scope: surround

ThPL error ] Issued if t lie processing preparatory to iniplicit mnapping causes a subex-

pressiori to h41),4 invetI out of the b iidig scope for one of the varia bles in it. The error
(,;iI lbe fixe'd b%-i sn lets to create the binding scope. or by illoving the binding formn

hat it surrounds, the entire 0S'1 expression. (The testing for this error is somiewhat

* approxiiniate4 in nat lire. It -;an m>sonic, erroneous situations and can comnplain in somie

ltul;l'iorv lihe're, there, 1, lo pr4)blelii. [In these latter situations, varialble renaiiing can
%e ~ be ulsed to eliriiinatVI tilt' cou11itilri

.4 ~ I 10155 value carried to non-QSS input by data flow from: call to: call

* As, iliit raied below%. this error is issued whenever dlata flow connects anl 055 output

to a nion-OSS Input (,f an 055 function as ini the exaniple below. (If the expression in

.44,
N%



56 Frror M.sdiic

question is intended to contaainia i:e,todl looji. the orror can be lixed by wrajpirig, tie

nestec port ion .in a mapS.)

Warning: Error 14 in ass expression:
(Rlist (Rlist (Elist (Elist '((1 2) (3 4))))
OSS value carried to non-OSS input by data flow from:
(Elist '(( 2) (3 4))
to:
(Elist (Elist 'M( 2) (3 4)

The error miessage print-, out t wo pieces, of' code in order t(, Indicate O le mitirce alld

destinat ion of the erroneous dat a flow. T'he oiteriiiost part of the first piece of code
swsthle function which creates tilie value in question. Thle out eriiiost hinict ion ii the

seodpiece of code shows thle function whic h receive, the value. ( En tire sublixPre1ssionI

are printedl in order to miake it easier to locate the functions in quest ion wit hini the oss
expression as-- a whole.) If nesting of expressions is used to imiplemient tile dat a flow. then

the first piece of code will be nestedl in the second one.

1 5 Non-terminating OSS expression: expr

This error miessage is issued whenever a comlplete OSS expression appears incapable of
teriiniat inug. The expression in quest ion is print ed. It unav well be only a tibexpresiori

* of tile oss expres.,ion being processed. (This error iiiesage can be t urnedl off byi~n
thle variable *permit -non-t erminat ing- oss -expressions*.)

Errors concerning the violation of restrictions. These errors are Issuedl whien
anl OSS expression violates one (if the isolation restrictions or the requiremient t hat w"It hiin

each on -line s u bexpression . t here rini b~ e a data flow path fromi each tvrliuu atioln pii

to eitc Ii oult puit

16~ Non-isolated non-oss data flow from: call to: call

I hil error is issued if anl (SS expression violates t he- non -055 dat a flow isolation
rest rict Ion. As shown below, the error miessage prints out two pIecsrfcd hc

iruiicate the data flow which triggered the error.

Warning: Error 16 in 055 expression:
(LETS* ((MUMS (EVECTOR #03 2 8))

(TOTAL (REDUCEF 0 #'+ NUMs))
(RVECTOR (U NUNS TOTAL))

Non-isolated non-OSS data flow from:
(REDUCEF 0 #1+ NUMS)
to:

MI UMS TOTAL)

A\ S ilcui~sed on page 10. errors, Of tOi, type canllw~v he chliirated hy (11 picat ill
>ulrexpressions until the dlata flow In uet'ilon IeCCOUuIes isolatedl. lVor exaiiiple. t lie erro)r

-~ ~ i~ovecouldhe fxed y duplicat ing I lie expre -,'i (Evector #0( 2 8))

- 17.1 Non-isolated oss input at the end of the data flow from: call to: c-all

17.2 Non-isolated oss output at the start of the data flow from: call to: call

One of these errors is iss uied If anl 059 expression violates the off-line port Isol ation
rest rict ion, 'I he error Iiessage prinlt s out two pieces of' c-ode which Inrd icate a data flo"



vhitl end> , ,r tart~ 1 ie it 1,rt i n tilie'-ti(or A\d' >li> d o it pag It)- 10errors of t I i I
k c ; i akk IV I tk i; Ie 1, 1 i: jJ1 11 i-- X jb -q rt-sion tinti i i t e riort in ii i est Tl

i~ No data flow path from the termination point: call to the output: call

I liv- trrr 1, >ttIld ;t* t territiIiOtiN t ill anl on-line slibexpreiorlt* all (J0.'

t,\ prv~in oi ii,11 t (itct t'( I It I i\ ti, oilec of' t Itte tottput s. AXs (ljsctused o n pagec 12 .

I ie err(or (-ar 'ti~ he ti~ted 11; tw(ITenI-carlvk teritijitating ()SS htirctlin> ln1ttail ft'il

'.rtii~ttni. Li ~ov. ii t i' ~iiiit ., , rroir (,all he fixed by it Tcotruncate

i!1(1(lile r\t~t~ifv~y: it I t: kk(rt . codeC copyling call be 11veil.

Errors concerning iniplenieit at ion lintiitations. These error, retied in'ij t

of the wvav Ih OSS inrii r akg it nipleienteil rather than artvt hilng fiindaivtieit

abhout (1 i5 eXpre,,>ion>l .

P) LambdaS body too complix to merge into a single unit: hm

Ili _ener;JlT he 055 iitai pick,t 1, capable of i-itibining togetilier arty kin tit1 pe

iii'.>lblt ots expression. Ini patrti teilar. thlere is niever a problemn as long a,,t Ill- exprce-do01

a>, a whiole doe,> niot hiave an i ) iniputs or (soult pits. H~owiever, Ii tIll lboil of a

lambdaS. it is pt 0si ble to wr-ilte (11 )5 x pression>, w i cl have both osi, iipt np anld oss

tpit.If snt':l ain expres, Ion i as it data flowk pat i frorti an OSS inlit to anl ()Ss 5 otpltt

wIinch conitain>, a rin-fl-Os data flowv are. t henti tis error iriessage is issuedi. For examlple.

h le error woul, d be issuedli I i the ,it I nii beW low.

(funcallS #'(lamnbdaS (items) ;Signals error 19
(declare (type oss items))

(Elist (Rlist items))

Ani error iniez>age is isssie d in the >it niation albt~e. becatiise the situation is uinlikelY
to occuir andl there is, io way lot stipplart lie sIiuation wvithiout resortingV to vt'rv pcla

code. Ili partictrlar. thev inpu~lt items ITI the( exaItIpIle abOXe would hlave to he converted

;Tito atl off-li tic in pit

20t The form 1'rri-ni not allowed in OSS expressions.

lIt ueneri . t lie ( 55 tac r, pa ekanQ', li as a snificien t ii nters tand(i ng of special forins to

ar I' lt t,rre-ct lvi eni e ;tppotrr In aIn ()SS expre~sioti. Hlowever, it does, ntt
hnii tie, 1 rtt>, compiler-let. flet. labels. or macrolet. The fornis, compiler-let anid

miacrolet viiibl riot bli ht hard ', biili'. liokvv'r it (lot!' riot seii %vort I the effort.

*I lit' fort v flet arid labels %%ilddI( lie ard to handle. because, the( (15 itacro package

d-- niot lprt'-tr ,, Idrii llt i ridrltt'rvforve its riot have atY ohlottis place to put

f1 'tI iti t hte codet it prolticv~.-. All Ihair forini! c-art be used bYsrniplY %wrapping t hei

irwirid l entirt os.' e'Xprv-1ii, raitli'r tlian ptittiiig thvn tin thei exprf-',iortv.

J. %

%



lIndex of 11, iit101

5. Index of Functions

T his sect ion is an index anid conicis*e sum inu a v of the fi uct ion,, variables. a rid spec i al

forits described in this docuinent Each ent ry shows the inputs arid out pirt of the

furnct ion, the page where docuinen tation can he foundr. and1( a one linie desc ript ion.i

T he namies of oss functions oft en start withi one- of the following prefi x let ters.

E Finuierator.

T lransducer.

R Reducer.

* Occasilonally, a namie will endl withi one of the following suffix let ters.

S Special formi.
F Function that takes functional argumnents.

In addition, the argumient and result namnes indlicate (dat a ty~pe restrict ions ( e.g..
nii lfuler indlicat es that an argurrien t mnust be a nuriber. itein indicates that t here is1 no0

ype restriction). Plural namnes are, used] iff the value in question is ant oss serres (e.g..

iiu iiiilcrs indlicates an OSS series of riuribiers; it erns indicates an OSS series of unrest rictedl

va is).The namne of a series input or oult purt begins with "i0" I if it is off- line.

alterS ilt, t irat on. r tenis => it cul

p18Alters the values in destiriatioirs to he items.,

defunS ita it, lamibda-list { do} { dccl} * &body expr-11list

p) 16 IDefinies an OSS function. see lambdaS.

Ealist alistr &optional (test # 'eqi) =: keysv, valnes,

p). 17 Creates two serres containing tire- key-, andI values iii an alist.

Edown koptional (start 0) fkey (:by 1) :to :above :length ---> nurnbers

p). 16 Creates a series of nuinrer, by counting down fromi start by :by.
Efile niae => Itemls

p). 2(0 Creates a series of the fornis in the tile namned namne.

*Ef ringe tree &optional (leaf- test 3'atom) =: /ea ves

p). 14 C (reates a series- of the leaves of a t ree.

Ehash table => ke ys values

p. 11) Creates two series con taiing the key' s andI valure, in a hash t able.
*Elist /i-st &optional (end-test #'endp) --: eleirnfnts,

* p. 16 Creates t series of the eleniierrt, in a list.

*EnumerateF init step &optional test ='- i teris
p. Creates a series by applying" step to un1it 1nt11l tes-t ret urns non-irull.

Enumerate- inclusiveF Inid stvp tvest -> Itersv

p). 20 C reates a series containing one 111o0W eleirit t hair EnumerateF.

Eoss &rest exIpr-list => Itemrs

p). F)T Creates a series of the results of* tie( expressions11.

* Eplist plist =.I indicators values

1) 17 (Creates two ,,erives coritaiuinrg the indicators and values, ti a plist .

? .%%%

P



Esequence cqIuorwc &optional mIT,1 (Eup) ) 4-loineirts

1). 16 ,t I it cre, of 1 lic -!I l, 1  I n it a tH.
Esymbols &optional (packa--,, *package*) :4. >iiibl:t

* ~Etree trre- &optional (ht't# 'atom) 4>- rodoe,

* p I (Cre;Ot it -. hrN le I" le- ini a t ree.

Eup &optional tr! 0) &key (': by 1i) :to :below : length -riunlwvl,r

it o hrle, )I ;oiuer- lov cwnntii up frmin sta H by :by.
Evectoi tvr.r &opt jonal c t!- K Eup) ) leliienits

p. I Cre ai >,ric> of lic ieit n a vector.

funcallS func-tioni &res.t expr-li- -> result

1). 1i -) pplli-s ant oss fin li! to I hie results of't te expressMios.
lambdaS kvar-list d(ecl},* &body cx;,r~ls

* p. I I Foriii for .pvtclfvirng literall ()ss functionis.
*last-oss-error*

p. .5o \ari abic conl i flirig a dc- iri pt iori of tie last error Inl all OSS expre.S onl.
*last -c(SS loop*

p. 50 Variable containing the loop the last oss expression was convertedl into.
letS var- value- pair-list { declk* &body ex pr-list res nult

p. :37 Binds oss variables Ii parallel.

letS* var- value-pair-lis:t { decl}* &body expr-lis t res ult

1). 39 Bi nds oss variables, >equ en t nally
- ~ mapS &body expr-list 4>itemls

). -43 Causes ('X1 )-Ii't to lbe Iiidplped over Ihe Oss variables inl it.
oss-tutorial-mode &optional (-or-nil T) => state-of-tutorial-Ilode

p. 14 If called with an argument of T, turns tutorial mode on.
pass-valS n expr => frest mlil-vlersl

p). 17 Used to pass mnultiple value, fromi a non-OSS function into an OSS exp~ression.
*permit-non-terminating-oss-expressionis*

p). 50 WvXhen non-nuil. inhibit>) error miessages about non-termninating 055 expressions.
prognS &body expr-list => result

p. 3') Delineates anl oss expression.
Ralist kevs values -* alist

p. 32 Comibines a series of keys andiii a eries of value-s together into anl alist.
Rand --:ls > 1)001

1). 36 ( irijptes the and of thec elemnents of /)ools, terminlating earlN.
Rand-late bools 4>' hooi

j). 36i ( onprntes the and of the elinits of bools.

Rappend lists4>, li' st
p. :32 Appends thne elCeInts (4liI together Inito a single list.

Rbag itoro -, 14.'l

p. 32 Uoiihnes the eleino-nt if liii- togethier into ant unordered list.
%V

AaA-



60 Index of Fiuncti,,i.

ReduceF init function items = result

p. 35 Computes a cumulative value by applying function to the elements of iteii,.

Rf ill name items &rest option-plist :> T
p. :31 Prints the elements of items into a file.

Rfirst items &optional (default nil) = item

p. 35 Returns the first element of iteins, terminating early.

Rfirst-late items &optional (default nil) = item

p. 35 Returns the first element of items.

Rhash keys values trest option-plist =: > table
p. 33 Combines a series of keys and a series of values together into a bash table.

Rlast items &optional (default nil) = item

p. 34 Returns the last element of items.

Rlength items :> number

p. 3- Returns the number of elements in items.

Rlist items => list
p. 32 Combines the elements of items together into a list.

Rmax niumbers =:> number

p. 34 Returns the maximun element of ntimter'.

Rmin iuinbers =;> timber
p. 34 Returns the minmhnum element of un ber.,.

Rnconc lists > list

p. 32 Destructively appends the elements of lists together into a single list.

Rnth n items &optional (default nil) item

1). 35 Returns the zith element of items, terminating early.
Rnth-late n items optional (default nil) - item k

1P. 35 Returns the nth element of iteml..

Ror bools ' bool
p. 36 ('omputes the or of the elements of bool.s. terminating early.

Ror-late bool, =: boo!

1p. 36 Computes the or of the elements of bools.

-. Rplist inlicators vahles => plist

_. 33 Combines a series of inditators and a series of values together into a plist.

Rsum nirmIbers z mit ber

p. 3 (' , putes the smu of the elements in nunbers.

Rvector items &key (:'ize 32) &rest option-plist => vector

p. 33 (ombines the elements of items together iTIto a vector.

showS thing &optional (format '-.'S") (stream *standard-output*) thing

1). 9 l)iplavs thing for debugging purposes.
Tchunk amount Oitems 'e lists

p. 27 (reates a Series of list, of lengt h amount of non-overlapping > ileries of Oiteli,,.
Tconcatenate ()iteiv I Oitem.,2 &rest mnre-(i'teriv :: items

-", Ip. 27 'oi,atenates two or more series end to end.

TconcatenateF in mmerator ()items = items

p. 27 (',,natenates the re,,ult,, of applying Lnnnterator to the elenllerit., of ()itcu.

S %Y

0



61

Tcotruncate items &rest uiorc-iteris => initial-items &rest iiore-initial-items

p. 25 Truncates all the input.- to the length of the shortest input.
Texpand bools Oitenis &optional (,ef'ault nil) : items

p. 30 Spreads the elements of items out into the indicated positions.

Tlastp Oitens :=- bools items
p. 29 Determines which element of the input is the last.

Tlatch items &key :after :before :pre :post = masked-items
p. 21 Modifies a series before or after a latch point.

TmapF function &rest items-list = items

p. 23 Map Function over the input series.
Tmask Omonotonic-indices ' bools

p. 28 Creates a series continuing T in the indicated positions.
Tmerge Oitemsl Oitems2 comparator => items

p. 28 Merges two series into one.

Tpositions Obools = indices
p. 28 Returns a series of the positions of non-nill elements in Obools.

Tprevious items toptional (detault nil) (amount 1) => shifted-items
p. 21 Shifts items to the right by amuont inserting default.

Tremove-duplicates Oitems &optional (orriparator #'eql) = items
p. 26 Removes the duplicate element s from a series.

TscanF {init} Function item, z. results
p. 23 Computes cumulative values by applyinE function to the elements of items.

Tselect bools &optional items => Oiterm,
p. 29 Selects the element., of item' corresponding to non-null elements of bools.

TselectF pred items = Oitems
p. 30 Selects the element, ,,f item, for which pred is non-ritill.

Tsplit items bools &rest more-hool => Oitemsl Oitems2 &rest more-Oitems

p. 31 Divides a series into multiple outputs based on bools.
TsplitF items pred &rest more-pred => Oitemsl ()items2 &rest more-Oitems

p. 31 Divides a series into multiple outputs based on pred.

Tsubseries Oitems start &optional (below (length Oitotns)) => items
p. 27 Returns the elements of Oitems from start up to. but not including, below.

%', Tuntil bools iteins => initial-item .,

p. 22 Returns items up to. but not including, the first lon -null element of bool,.
TuntilF pred items => initial-item.s

p. 22 Returns items up to. blt hot including,. he first l'vit-Ime which satisfies pred.

Tuindow anmount Oitems => list,
p. 27 Creates a seriv , li-d 11,1, f ii imir t -iceo~v overlapping ubseries.

type oss &rest variatl-list
p. .15 Declaration used to -pe i tf lhat v;tri ahl,- ir, ()s,, variables.

valS &rest expr-list => &rest rr ultiple ale, rettilf

p. 47 Returnrs multiple. scri,.- ,ll,.-.

U,'

I



.T ? Y-4 k. - - -w

r4T

v '40 a 0 l 9 0 l


